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Simulation of micro pumps is complicated by the

interaction of the fluidic and mechanical domain. The fluid

structure interaction (FSI) essentially determines the

dynamics of micro pumps and therefore has to be taken into

account. Mesh based approaches are in this context very

time consuming, though very accurate. However to perform

parameter variations and optimizations usually simplified

analytical and numerical models have to be set up. To speed

up model development and parametrical variations of single

pump elements, a modular approach where FSI has been

taken into account within a system simulation is used. The 

system simulation is based on lumped models, combined in

the multiphysics simulator SABER [1]. A simulation toolkit

based on various lumped models is used for the simulation

of two different micro-pump layouts well known from

literature. Furthermore a concept for a three finger

peristaltic pump is proposed based on simulation results.

��������: lumped models, micro pumps, valves, system

simulation
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A large variety of different micro-pumps has been

reported during the last decades [2]. They differ in layout

and actuation. The various components of micro pumps

� like channels, valves, membranes, etc. � can be modeled

separately by lumped models. The lumped models of the

components can be combined in a system simulation to

model a complete micro pump. The use of such a modular

approach for the pump simulation provides several

advantages: Compared with mesh-based simulations the

simulation with lumped models allows parametrical studies

and optimization within fraction of time. Additionally the

modular approach allows fast redesign and substitution of

parts. In the following a toolkit is presented consisting of 

different elements like channels, diffusers, actuators and

valves. Finally the toolkit is applied to simulate some

exemplary micro pumps.
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Micro pumps reported in literature [2] differ in several

aspects, for example geometry and working principle.

Following the classification of [3] the two pumps

considered as examples in this paper [4], [5], [6] belong to 

the category of reciprocating displacement pumps. Both 

pumps are diaphragm pumps that differ in their valve types

and actuation principles. In the following lumped models

for the various components are derived and models for the

two pump types are presented.
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In micro fluidics usually laminar Poisseuille flow can be

anticipated. Thus well known analytical formulas can be

found in the literature [7] to model fluidic channels. These

formulations can be applied for circular and rectangular

channels and have already been reported as lumped models

for SABER in [8]. They implement the fluidic resistance as

well as the fluidic inductance whereas the compressibility is

not considered.
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To cover the typical reciprocating diaphragm micro

pumps, the two most commonly used valve types have been

chosen: nozzle-diffuser valves and flap type valves.

For conical nozzle-diffuser elements in general the flow

resistance coefficient � is written as: 
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This coefficient varies with the pressure drop � � over

the nozzle-diffuser element, the fluid density � and the

mean flow velocity � at the narrowest part of the element. It 

is different in forward and backward direction [9]. Thus a

flow directing capability is given by the ratio of the flow 

resistance coefficient in the negative direction (nozzle) and

the positive direction (diffuser). With increasing flow also

the flow directing capability increases.

These elements are used in the pump example modeled

first. It is described in detail in [4] and depicted in Figure 1. 

The valve is implemented as lumped model with the

input parameters of the smallest diameter, the nozzle-

Figure 1: Nozzle-diffuser pump with the inlet on the left 

side and the outlet on the right in a) supply mode and

b) pump mode causing a net-flow towards the right side.
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diffuser length and the opening angle � within the limits of

5� < � < 40�. Depending on the flow direction the pressure

loss over the element is calculated by using equation (1),

(6) and (10) of reference [9].

As second example the pump reported in [5] is chosen,

cf. Figure 2. This pump type uses passive flap valves. These

valves typically consist of a flexible diagram or flap and a 

valve seat. This valves are open in flow direction and

closed if the flow is in reverse direction. Nevertheless some

leakage of this valve types is often reported and in most

cases caused by particles that prohibit a complete sealing.

As there is no general analytical description that models

a flap valve, waning from the geometrical parameters and

the material data, the lumped model flap-valve is based on a

diode model with two fit factors, well known from the

electrical domain:

� �1
�� ���
���  (2)

The factors � and � of (2) define the interrelation

between the pressure � and the volumetric flow��� They

have been determined by fitting the curve to the points of a 

lookup-table, extracted from Figure 3a) of reference [6].

This is a limitation to the model, due to the fact that the 

flow-pressure pairs of the specific flap-valve have to be

provided resulting from measurement or fully coupled

FEM-simulations.

Figure 2: Flap-valve pump in a) supply and b) pump mode.
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As depicted in Figure 3 there are several actuation 

principles for reciprocating membrane micro pumps. In

case of the nozzle-diffuser pump in our example, a piezo 

disc actuator is used. It is mounted onto the membrane by 

an adhesive layer, cf. Figure 3a). The flap valve pump in

our second example is actuated by an external pneumatic

system like displayed in Figure 3e).

All those actuation principles launch their force into a

membrane that induces the volume displacement in the

pump chamber. Depending on the actuation principle, either

a source element (force or displacement) provided by the

network simulator can be used directly or a transducer

element has to be applied in between like for example a

piezo-beam [10]. 

The actuators are connected to the lumped model of a

membrane with circular shape. This membrane model of

the toolkit has already been presented by the authors

in [11]. The membrane is displaced in its center by a certain 

force/displacement and loaded from below by a counter

pressure. Since it is a quasi static model it is only valid for 

actuation frequencies much smaller than the plates

resonance frequency.

Figure 3: Different types of actuation principles [5].

Piezoelectric drives: a) piezo disc, b) piezo piston;

c) electrostatic drive; d) thermopneumatic drive and

e) pneumatic drive
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To receive a more uniform flow in simulations it has

been suggested in [6] to add elastic elements into the 

system. This pressure and flow signal smoothing can be

realized by implementing fluidic capacities like diaphragms

or flexible tubes.

As lumped model, the capacity is implemented as a gas

bubble, following the law of Boyle-Marriotte at constant

temperature. The input parameter is just the initial gas

volume at normal pressure.
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The applied toolkit provides all the lumped models

listed in Table 1. The additional lumped models which are 

required are provided by the standard library of the

simulator. For the simulations the different lumped

elements are interconnected as shown in Figure 4 and 6.

The signals passed along the interconnections for the fluidic

parts are pressure and flow. To track the total flow into and

out of the system integrator elements are used.
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Channels dimensions

Nozzle-

diffuser

elements

diameter at input, length,

opening angle

Flap valve fit factors �, � for

� �1
�� ���
���

Membrane diameter, thickness,

Youngs-Moduls, poisson-

number

Pneumatic

actuation

transient pressure profile,

dead volume

Fluidic

capacitance

bubble volume at normal

pressure
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Table 1: Input parameters of the toolkits elements used to

rebuilt the pumps using the network simulator SABER [1]

9
 �#$&�
�&���


For both pump examples there have been attempts to

describe the system either by analytical formulations or 

model it with mesh-based simulation tools [4], [6].

Figure 4: Model setup of a) the nozzle-diffuser pump [4]

with a piezoelectric actuation and nozzle-diffuser valves [9]

and b) the flap valve pump [6] with a pneumatic actuation.To validate our toolkit approach, the mentioned pumps

are modeled and the simulation results are compared to the 

experimental data of [4], [5], [6]. To rebuild the pumps the

different elements of the toolkit are interconnected. As

depicted in Figure 4a) the nozzle-diffuser pump therefore

consists of the nozzle-diffuser elements and the membrane

in between. The membrane is driven by an ideal position

source that models the piezo�s displacement and driving

frequency. A spring and a mass can be added from the

simulator toolkit to model the actuators transient behavior.

Since the experimental setup does not allow a flow

measurement directly at the pumps inlet or outlet, two 

capillaries have to be added in the real pump as well as in

the simulation model. The fluid parameters (viscosity,

density etc.) as well as other global parameters are defined

in an include file which inherits its values to all

components.
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The actuation of the nozzle-diffuser pump of [4] was

modeled in the system simulation by a sinusoidally driven

displacement source (cf. Figure 4a)). The parameters for the

displacement source were obtained from experimental data

like follows: By fitting the simulated flow rate of pump

type A to the experimental results reported for a stroke of

9.2 �m at 100 Hz in [4] an "equivalent stroke" of 6.5 �m in

the system simulation was determined at which the flow

rate could be reproduced. This number corresponds well to

the displacement values also applied in [4] for simulating

the pump. Based on this fit point all other operation

conditions at strokes between 3.9 �m and 9.6 �m at a

driving frequency of 100 Hz could be reproduced for pump

types A and B without adapting any other parameters. The

deviation from experimental results concerning the flow

rate was in any case smaller than 15 %. However, the 

frequency dependence of the flow rate could not be

reproduced correctly. This might be caused by the different

implementation and size of the fluidic capacities or by

limitations of the membrane models transient behavior.

The modular constitution of the second example is 

shown in Figure 4b). Two lookup-table elements generate

the driving pulse as provided in Figure 5 of reference [6].

The first lookup-table generates the pressure pulse as given

in [6] while the second lookup-table converts this pressure

into a displaced volume leading to a generated flow, see 

figure 5 in [6]. Capacitive elements following the ideal gas

law model the pressure-smoothing-elements (PSE�s)

applied for modeling in [6]. The parameters for the two flap

valves were extracted from the experimental data from [6] 

as well as the dimensions of the attached capillaries.

For the flap valve pump the dynamic behavior

(Figure 5) as well as the maximum overall flow rate can be

reproduced well by the simulation. The simulated flow rate

of 380 �l/min is 5 % lower than the experimental data of 
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400 �l/min given in [6]. Compared to Figure 8 in [6] the

peaks indicating the switching of the valves are more

distinctive. As shown in the previous sections it is possible to

rebuilt known micro pumps with the toolkit with reasonable

accordance to the experimental results. This encourages to

design, test and optimize new micro pumps with the aid of

the toolkit. Figure 7 shows a possible pump design for a 

three-finger peristaltic micro pump with no flow directing

elements (valves). The flow direction and pumping is

determined by the inductance and resistances of the

connected system and the consecutive stimulation of the 

three membranes.
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The simulation result of this pump design is depicted in

Figure 8. It is obviously possible to gain a net flow of

120 �l/min at a pump rate of 167 Hz. The actuator stroke is

chosen to be 30 �m resulting in a maximum force of 0.5 N. 
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pump fingers or flow directing elements such as the valves

or diffusers shown. This could be used to gain higher flow

rates with the final design.
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Figure 5: Results of the flow characteristics for a pneumatic

actuation of the flap valve pump driven by a pump

frequency of 10 Hz. It has been demonstrated with two examples that micro

pumps can easily be simulated by lumped models. The

system models have been verified by the experimental

results of well-known micro pumps and are in good

agreement. This encourages to enlarge the toolkit in the

future to cover more pump types (e.g. with ball-valves) or

even to model complete micro fluidic systems, e.g. by

combining a pump with a micro mixer [12] and sensor

models. This will allow for a fast design of lab-on-a-chip or

other micro fluidic systems.
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