SINGLE-MOLECULE PCR IN A PICOWELL ARRAY SIMULTANEOUSLY IMMOBILIZING PCR PRODUCTS TO A PDMS COVERSIDE

J. Hoffmann1*, M. Trotter1, F. von Stetten1,2, R. Zengerle1,2,3 and G. Roth1,2,3

1Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, GERMANY
2HSG-IMIT, Wilhelm-Schickard-Straße 10, 78052 Villingen-Schwenningen, GERMANY
3Centre for Biological Signalling Studies – BIOSS, University of Freiburg, GERMANY

ABSTRACT
For the first time, we amplified single DNA-molecules (“Digital PCR”) randomly distributed in a picowell array and simultaneously immobilized the generated PCR-products to the surface of a PDMS coverslide (“solid-phase PCR”) which was used as sealing of the picowells during PCR. First, by this unprecedented technique PCR-products can be recovered for both, further reactions/analysis and counting the number of initial DNA-molecules from digital signals with a good signal to noise ratio of 10. Second, our experiments demonstrate the currently smallest low-volume on-chip PCR in an array of 18.5 pL wells. This may enable single-cell PCR experiments by filling PCR microreactors with truly single-cells due to geometrical constriction.

KEYWORDS: Digital PCR, solid-phase PCR, parallelization

INTRODUCTION
The first primer-directed PCR published in 1988 by Saiki et al. was performed in a reaction volume of 100 μL [1]. Meanwhile, PCR reaction volumes have been scaled down (86, 23, 1.3 pL) while increasing the number of reaction wells (10^4), but PCR failed in volumes of 23 and 1.3 pL [2]. Among the major applications of low-volume PCRs in on-chip microreactors are Digital PCR [3,4] and single-cell analysis [5,6]. Significant shortcomings are inherent to the latter systems. First, PCR is often detected by TaqMan probes [5] or intercalating dyes [3], generating low and in some cases unspecific signals; second, low-volume PCR-products are discarded after PCR and cannot be further analyzed [3,5]. Our system overcomes these disadvantages by immobilizing PCR products spatially-resolved to a standard slide format for intensified visualization and a vast range of other downstream protocols.

REACTION SETUP
Solid-phase PCR (SP-PCR) is performed in glassy picowell arrays with well diameters of 29 μm (18.5 pL) or 44 μm (76 pL) (Figure 2, 1). A PCR mixture with 0.025 (digital PCR) or 25 (positive control) DNA molecules/well is centrifuged into the picowells, and sealed with a PDMS coverslide coated with solid-phase primers (Figure 1 A, B). After SP-PCR, the PDMS slide is detached, washed, stained, and scanned with a microarray reader (Figure 1 C, D).

EXPERIMENTAL RESULTS

Figure 1: Principle of single-molecule digital PCR simultaneously immobilizing PCR-products to a PDMS-slide via solid-phase PCR. (A) A picowell array is filled with a PCR reaction mix containing < 1 template molecule per well and sealed with a PDMS cover slide coated with immobilized reverse primers. (B) Within 50 PCR-thermocycles, the PCR-product is immobilized to the PDMS slide only at positions of wells containing a DNA template molecule. After washing, the slide is stained with streptavidin-Cy5 (C) against incorporated biotinylated dUTPs and scanned (D).
First, we optimized the composition of the low-volume PCR reaction mixture for performing SP-PCR within on chip reactors. Careful balancing of BSA and Tween 80 enabled successful PCR within picoliters. SP-PCR with calculated 25 molecules/well generated a signal in 96.3% of all wells on the PDMS chip showing the hexagonal pattern of the picowells (Figure 2, 2). No signal was generated on a PDMS coverslide coated with mismatching solid-phase primers (Figure 2, 3).

Second, signals at discrete positions are obtained from statistically single molecules (Figure 3) with a signal-to-noise ratio of 10. All experiments are analyzed by counting the positive signals (Figure 4).

Figure 2: Solid-phase PCR within an 18.5 pL (A) and 76 pL (B) picowell array immobilizing the generated PCR-product to a PDMS coverslide. (1) Microscopic image of the array with a surface-to-volume ratio of 0.21 μm⁻¹. (2) A fluorescence scan of the PDMS slide from the positive control reaction with 25 template molecules/well showed in 96.3% of all wells a signal, clearly reflecting the pattern of the picowells. As specificity control, a reaction was performed with solid-phase primer featuring a sequence mismatching the template sequence. The corresponding PDMS coverslide generated no single fluorescence signal (3). Resolution of the scanner is 5 μm.

Figure 3: Cy5 stained PDMS slide after digital SP-PCR in a picowell array with initially 0.025 templates per 76 pL well. The PDMS slide shows a pattern with discrete spots at discrete positions demonstrating successful SP-PCR with signals generated from single template molecules.
CONCLUSION AND OUTLOOK

This work demonstrates two novelties. First, we performed low-volume SP-PCR in on-chip microreactors featuring the currently smallest reported volume of 18.5 pL. This can lead to highly parallel SP-PCR analytics for e.g. single-cell analysis [5] or digital PCR [3]. Second, we were able to immobilize PCR products from single molecules to a PDMS coverslide making them accessible for further downstream analysis. Novel applications can include the recovery of PCR-products from digital PCR chips from e.g. by Fluidigm [7] for downstream processing.

ACKNOWLEDGEMENTS

We gratefully thank the Hans L. Merkle Foundation for Excellency in Science and Technology and the Federal ministry for Education and Science (FKZ: 16SV3857) for financial support of this project.

REFERENCES


CONTACT

*J. Hoffmann, tel: +49-761-2037312, jochen.hoffmann@imtek.de