Reconstruction of the active material, binder and pore space of a LiCoO₂ Li-ion battery cathode

T. Hutzenlaub¹, R. Zengerle¹ and S. Thiele¹ ¹Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany

In the reported work, we reconstruct a <u>LiCoO₂ cathode</u>, for the first time <u>differentiating</u> between all <u>three</u> <u>constituents</u>: (i) <u>active material</u>, (ii) <u>binder</u> and (iii) <u>pore</u> <u>space</u> for this specific material. We apply a hybrid method of manual and grey-scale threshold <u>segmentation</u> for <u>reconstruction</u>. The reconstructed images are assembled to a <u>three-dimensional geometry</u>.

INTRODUCTION

Till now most models predicting lithium-ion battery behaviour are based on the porous-electrode theory [1]. Focused ion-beam scanning / electron microscopy (FIB/SEM) [2] can be employed to study a given microstructure by removing thin layers of electrode material and combining images of each layer to produce a three-dimensional reconstruction of the respective electrodes thus replacing the porous-electrode theory with a more realistic description of microstructure. This technique was utilized to study the LiCoO2 cathode of a lithium-ion battery, differentiating between the active material and a combined binder and pore phase [3]. Like Wilson et al. [3], we focus on a LiCoO₂ cathode. Unlike them, we differentiate between all three constituent parts -(i) the active material, LiCoO₂, (ii) the binder and (iii) the pore space - by applying a hybrid method of manual and grey-scale threshold segmentation.

EXPERIMENTAL

To obtain the electrode material used in this work, a new VARTA LIC 18650 WC lithium-ion battery was unsealed and dismantled. After evaporation of the electrolyte, a piece was extracted from the cathode and prepared for FIB/SEM. With the help of an FEI Quanta three-dimensional dual-beam FIB-SEM at Fraunhofer IZM, Berlin, a cavity was cut into the sample as a starting point and subsequently one side of the cuboid was ablated slice by slice, while the SEM, with an angle of 38° relative to the sample surface, generated one image per slice.

IMAGE PROCESSING

In a first step, the images were aligned to compensate for both global sample movement due to vibrations and temperature-induced contraction and expansion and the angled REM. The images were cropped to remove unwanted fringe areas, generating a stack of 200 images describing a cuboid which measures 20.02 μ m x 18.13 μ m x 12.4 μ m.

The segmentation was performed on an imageby-image basis by generating a specific histogram of each image and pre-segmenting the three phases by threshold values given by minima between the overlapping intensity peaks of LiCoO_2 and binder phases and left of the binder phase peak. Where required, this segmentation was corrected manually by comparing the pre-segmented images with the original image and its respective neighbouring images (Fig. 1).

Finally the segmented images were assembled to create a 3D reconstruction of the sample (Fig. 2).

CONCLUSION AND OUTLOOK

In the reported work, the three-dimensional reconstruction method was utilized for the first time to identify and differentiate between all three phases of the $LiCoO_2$ -based cathode of a Li-ion battery. In future work we will use this reconstruction to generate parameters to support the data basis of homogenized cathode models.

ACKNOWLEDGEMENTS

The authors acknowledge the collaboration with Fraunhofer IZM, Berlin.

Figure 1: Segmentation of an SEM image. Active material (dark grey), binder (light grey) and pore space (black) are specified by their respective color.

Figure 2: 3D reconstruction of the sample. Active material (dark grey), binder (light grey) and pore space (black) are specified by their respective color.

REFERENCES

- J. Newman and W. Tiedemann, *AIChE Journal*, 21, 25-41 (1975).
- [2] L. Holzer, F. Indutnyi, P.H. Gasser, B. Munch and M. Wegmann, *Journal of Microscopy*, 216, 84-95 (2004).
- [3] J.R. Wilson, J.S. Cronin, S.A. Barnett and S.J. Harris, Journal of Power Sources, 196, 3443-3447 (2011).