The centrifugal microfluidic LabDisk platform for the automation of nucleic acid analysis and immunoassays

D. Mark1, O. Strohmeier1, T. van Oordt1, G. Roth2, D. Kosse1, R. Zengerle1,2,3 and F. von Stetten1,2

1 HSG-IMIT, Wilhelm-Schickard-Straße 10, 78052 Villingen-Schwenningen, Germany;
2 Laboratory for MEMS Applications, Department of Microsystems Engineering – IMTEK, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany;
3 Centre for Biological Signalling Studies - BIOSS, University of Freiburg, Germany
E-mail: daniel.mark@hsg-imit.de

Introduction
We present a centrifugal microfluidic Lab-on-a-Chip platform for the integration and automation of diagnostic and biochemical protocols, including nucleic acid analysis and immunoassays. The platform is based on microstructured two-layer plastic disposables which are processed by a rotary motor as the only active component. As processing instrument, custom-made prototypes as well as commercial platforms like lab centrifuges or centrifugal thermocyclers (Rotor-Gene platform, Qiagen) can be used. Several LabDisk prototypes for different applications were developed.

Application examples
In a first example, 14 real time PCR reactions were performed in parallel in microstructured foil substrates. The detection of < 10 copies of the antibiotics resistance marker Exf A was demonstrated in a LabDisk featuring pre- and main amplification.

In a second example, isothermal amplification of DNA by recombinase polymerase amplification (RPA) has been demonstrated. Automated testing of purified DNA samples with sensitivities < 20 copies and time to result of 20 min was achieved.

In a third example, a LabDisk for nucleic acid purification was developed. This allowed purification of a lysed suspension of Gram-positive or Gram-negative bacteria in less than 13 minutes with a yield of more than 30% compared to the theoretical maximum.

In a fourth example, a LabDisk for an ELISA immunoassay was demonstrated. A custom-made immunoassay versus Ricin was successfully automated in a centrifugal-microfluidic structure and showed a similar sensitivity of 20 ng/mL and processing time of 45 minutes compared to the manual protocol.

Conclusion
Overall, the development of a microfluidic platform for a large range of applications in the field of diagnostics and biochemistry is shown and the successful implementation of assays for DNA and protein analysis and sample preparation were demonstrated.