Non-contact single cell printing for single cell real-time PCR

J. Schoendube ¹+, F. Stumpf ²+, A. Gross ³, R. Zengerle ^{1,2,3}, G. Roth ^{1,2,3}, P. Koltay ^{1,4}

+ These authors contributed equally

Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, Georges-Koehler-Allee 103, 79110 Freiburg, Germany ² HSG-IMIT, Georges-Koehler-Allee 103, 79110 Freiburg, Germany

³ BIOSS – Centre for Biological Signalling Studies, University of Freiburg, 79110 Freiburg, Germany

⁴ BioFluidix GmbH, Georges-Koehler-Allee 103, 79110 Freiburg, Germany

Summary

We present the application of the Single Cell Manipulator (SCM, [1]) for a proof-of-concept study about real-time single cell PCR in a commercial off-the-shelf thermocycler. The experiment features:

• Optical cell detection in dispenser

Figure 3: Single B cell printed into a well and cultured for 8 days.

- Printing of single cells into PCR tubes
- Real-time PCR of single cells

Single cell analysis, including single cell PCR, is an emerging method of life sciences [2, 3]. Applications of the SCM technology include generation of clonal cells lines, heterogeneity studies, cancer and stem cell research.

Single Cell Manipulator (SCM)

The SCM instrument (Fig. 1 & 2) consists of a three-axis robot, optics and a transparent dispenser chip. When a single cell is optically detected in the nozzle, it can be dispensed on demand encapsulated in a free-flying droplets (100 pl). Cell detection can be performed by the operator or automatically by a detection algorithm which enables higher through-put.

single cell manipulation

Fig. 3 shows a single B cell printed into a micro well. It has been cultured over 8 days and proliferation has been observed. From 20 printed single cells 11 divided.

Single Cell PCR

First experiments for single cell PCR with the SCM and a Rotor-Gene 2000 thermocycler (Corbett Research, now Qiagen) have been evaluated with B cells and a primer system against β -actin. B cells are suspended in PBS (10⁵ cells/ml) and printed manually into PCR tubes, pre-filled with 20 µl of PCR mix. Amplification signals from 20 of 76 single cell samples could be detected. Fig. 4 shows results from an exemplary data.

drop-on-demand printing

- label-free cell detection
- low dead volume (1.5 μl)
- three-axis robot

Figure 1: Single Cell Manipulator (SCM). Non-contact printer for the seperation and positioning of single cells.

Single Cell Printing

Manual B cell dispensing into a micro well plate revealed that 20 out of 23 droplets contained a single cells, one droplet contained two cells and two droplets were empty.

Figure 4: Result of a single cell PCR experiment. Positive signals were measured in 5 out 6 single cells samples.

Conclusion

Non-contact printing of single cells is a versatile method to position cells individually on any uncovered substrate. Single cell PCR was shown as exemplary application.

Acknowledgements

This work has been supported by the European Commission (FP7 GA257073).

Figure 2: NanoJet cell dispenser chip fabricated from silicon and glass and single cell printing.

References

"Inkjet-like printing of single-cells", A. Yusof et al., Lab on [1] a Chip, 11, 2447 (2011)

"Single-cell analysis: The deepest differences", C. Schu-[2] bert, Nature, 480, 133 (2011)

"Microfluidic Digital PCR Enables Multigene Analysis of [3] Individual Environmental Bacteria", A. Ottesen et al., Science, 314, 1464 (2006)

