An Integrated Centrifugal Lab-on-a-Chip System for fully automated detection of pathogens via Real-time PCR

G. Cziliwik¹, O. Strohmeier¹, I. Schwarz¹, N. Paust¹, S. Zehnle¹, M. Kräft¹, F. von Stetten¹,², R. Zengerle¹,²,³ and D. Mark¹

¹ HSG-IMIT – Institut für Mikro- und Informationstechnik, Freiburg, GERMANY
² Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, GERMANY
³ BIOSS – Centre for Biological Signalling Studies, University of Freiburg, 79110 Freiburg, Germany

Summary

We present an integrated and portable centrifugal microfluidic foldisk (“LabDisk”) for DNA based sample-to-answer detection of bacterial pathogens featuring:
• Magnetic bead-based DNA extraction
• Real-time Polymerase-Chain-Reaction (PCR)
• Automated process, time-to-result – 3 hours
• Detection of Staphylococcus aureus as a model study
• Presorage of PCR reagents

For processing of the LabDisk, the small and portable LabDisk-Player was used, which can be applied at the point-of-care.

Motivation

For many infectious diseases, such as sepsis, there is a growing demand for fast, small and easy-to-use diagnostic tests. Fully automated Lab-on-a-Disk systems combine portability with fast turnaround times. This enables untrained users to conduct complex medical tests and to decrease reporting hold-ups in medical practice. We implemented a fast point-of-care sepsis test for detection of pathogens on our centrifugal microfluidic LabDisk platform. The system has the potential to enable proper use of correct antibiotics and may help to decrease the spread of antibiotic resistances in sepsis treatment.

Materials and Methods

The LabDisk was fabricated by micro-thermoforming of COP foils. Complete pre-storage of PCR reagents comprised air-dried primers, FAM labeled probes and lyophilized PCR beads (illustra mix RTG, GE Healthcare) in the reaction chambers. The surface of the DNA extraction module was hydrophobically coated using Teflon AF to prevent adsorption of magnetic particles. The foldisk was finally sealed with a pressure sensitive adhesive foil. The tests were performed in the “LabDisk Player” (Fig. 2), a portable device with a weight of ~ 3 kg that features fluorescence detection, PCR-thermocycling and the possibility to run predefined frequency protocols.

Results

For demonstration of the automated sample-to-answer workflow, 1.6 x 10⁶ genome equivalents of S. aureus were successfully detected in approximately 3 hours (~35 min. lysis and DNA extraction; 2 h 30 min. amplification by thermocycling) (Fig. 4).

Conclusions

We demonstrated rapid sample-to-answer detection of S. aureus as a proof-of-principle. The low dimensions of the LabDisk Player and the monolithic foldisk design ideally meet the requirements for an application at the point-of-care. The parallel detection of a full pathogenic panel in multiple reaction cavities as well as presorage of liquid reagents is currently under development. Acceleration of thermocycling needs to be addressed.

Acknowledgements

The results are part of the ASCMicroPlat project, funded by the European Union FP 7 (Grant Agreement 258759).