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ABSTRACT 

A novel approach for filtration on a centrifugal 
microfluidic platform is presented for the first time. This 
approach is intended to concentrate bacteria from a large 
volume. In axial centrifugal filtration the filter is oriented 
perpendicular to the axis of rotation. This feature allows 
for integration of dead-end filtration while the filter cake 
is continuously removed from the filter by centrifugation. 
This prevents clogging of the filter. Furthermore, a 
continuous sample feed enables processing of large 
samples on one disk. Especially for analyzing drinking 
water large volumes have to be processed and solutions 
for rapid bacterial concentration are highly appreciated. 
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INTRODUCTION 

Usually, for bacterial enrichment either centrifugation 
or filtration is applied. Plain centrifugation requires high 
centrifugal accelerations larger than 5000 g for 
concentration of bacteria and in plain filtration the 
bacteria will be distributed over large areas across the 
filter. Furthermore, such filters are prone to clogging. 

 

 
Figure 1: Schematic of the axial centrifugal filtration 
approach. An input flow with low bacterial concentration 
is filtered axially. The retained bacterial cells are 
centrifuged radially outward to further concentrate the 
bacteria and to prevent filter clogging. 
 

Combination of these two approaches, however, 
enables the application of filters with large cross-sectional 
areas while the retained bacteria will be centrifuged 
outward and concentrated further by the centrifugal force 
(Figure 1). With this combination bacteria can be rapidly 
concentrated at rotational frequencies at 1000 g even from 
large starting volumes while preventing clogging of the 
filter.  
 
MATHEMATICAL APPROXIMATION 

For a first simple mathematical approximation two 
assumptions are made: the fluid is at rest in the radial 
direction and the particles to be filtered are spherical in 
shape. With these two assumptions the radial velocity vrp 
of the particles can be calculated using the Stokes drag Fst 

 
௦௧ܨ  ൌ  ௥௣    (1)ݒ௣ݎߟߨ6
 
with η being the dynamic viscosity of the fluid and rp 

the radius of the particle. Furthermore, the centrifugal 
force Fc on the particles in the fluid is 

 
௖ܨ  ൌ రయݎߨ௣ଷ Δߩ · ߱ଶܴ   (2) 
 
with Δρ = ρp−ρf being the difference in the densities 

of the particles ρp and the surrounding fluid ρf, ω the 
rotational frequency and R the radial distance from the 
axis of rotation. Of course, the radial velocity of the 
particle vrp is the ratio of the displacement dR and the time 
dt 

 
௥௣ݒ  ൌ ௗோௗ௧      (3) 
 
Combining (1), (2) and (3) and rearranging for dt and 

integrating from the inner radius Ri to the outer radius Ro 
yields 

 
ݐ  ൌ  ଽఎଶ௥೛మ · ୼ఘ · ఠమ ݈݊ ோ೚ோ೔    (4) 

 
This short and simple approximation only allows for 

a rough estimation of the time required to centrifuge 
particles off the filter. However, it shows some basic 
correlations: processing time increases with increasing 
viscosity of the fluid and/or with increasing desired 
displacement of the particles. On the other hand, 
processing time is reduced with larger particles, larger 
difference in densities of the particles and the surrounding 
fluid, increased rotational frequency and/or increased 
radial distance from the axis of rotation. 
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MICROFLUIDIC LAYOUT 
The novel unit operation for 

filtration was realized by integration 
microfluidic structure which has been 
sides of a LabDisk [1] (Figure 2). A
positioned sample inlet chamber on the
disk is connected to a filter chamb
integrated filter. Here, the sample has to
filter and a through-hole in the disk to 
the disk. A permeate chamber on the
collects the permeate. 

 

Figure 2: Microfluidic structure for on-d
bacteria. The novel unit operation c
chambers: an inlet chamber at the uppe
into which the sample is loaded, a
connecting the upper side of the disk to t
a permeate chamber on the lower si
permeate of the filtering process. 
structures fit on one LabDisk. 
 
FABRICATION 

The microfluidic structure shown
been milled by the HSG-IMIT Lab-o
and Foundry Service, Freiburg, into a 
After the milling process a polycarbona
with pore size of 0.2 µm (Nuclepore 8
International Ltd., United Kingdom) wa
filter chamber and bonded to the PMM
temperature of 140 °C and at a pressur
process duration of 10 s. Then, both 
laminated with adhesive foil (900360-
GmbH, Möchengladbach, Germany
microfluidic structures. 

 
EXPERIMENTAL EVALUATI
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In a second test, bacterial s

enriched on the disk. A diluti
[2] containing 108, 107, 106 an
onto the LabDisk (Figure 3) a
filter. The liquid contained in t
plated on plate count agar 
Germany) and incubated overn
plates showed any bacterial gr
i.e. bacterial reduction by fi
Bacteria collected from the f
successfully be cultured ind
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Figure 4: After on-disk bacter
(on filter) as well as the perme
plated on PC agar plates and
the retentate could successfully
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RE-DESIGN FOR PRO
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continuous [3] non-contact [4] application of sample onto 
the disk and for processing of much larger sample 
volumes than the volume of the inlet chamber. A square 
form of the inlet chamber with the corners pointing 
towards the four filter chambers automatically divided the 
sample into four aliquots to be processed on the four 
filters respectively. To remove the processed fluids from 
the disk (also large volumes), a channel directed radially 
outward with an open end at the rim of the disk was 
included on the lower side of the disk. Thus, the 
processed fluid was centrifuged off the disk. Permeate 
chambers have been omitted (Figure 5) in this design as 
clean permeate has been collected off-disk with a 
receptacle (Figure 3). Furthermore, additional collection 
chambers positioned radially outward from the filters 
have been added into which the particles and bacteria 
retained by the filter were centrifuged. 

 

 
Figure 5: Microfluidic structure for continuous on-disk 
axial filtration of bacteria featuring one inlet chamber 
arranged circularly around the axis of rotation. A filter 
support structure is implemented inside the through holes 
of the filter chambers. Due to the centrifugal force, 
bacteria are transported radially outwards, across the 
surface of the filter into collection chambers. Permeate is 
continuously transferred to the receptacle. 

 
To evaluate processing of large volumes, di-water 

was continuously applied onto the disk using a peristaltic 
pump (Ismatec MCP Process IP65, IDEX Health & 
Science, Wertheim, Germany). A through-put of 5 l in 
38 min corresponding to a volume flow rate of 2.2 ml ⋅ s-1 
at a rotational frequency of 80 rotations per second has 
been demonstrated.  

After having processed 5 l of di-water with the disk 
the leak-tightness was investigated by application of 2 ml 
of E. coli suspension in Liquid Broth at a bacterial count 
of 1 ⋅ 108 cfu ⋅ ml-1. The E. coli suspension was processed 
at a rotational frequency of 80 rotations per second (i.e. 
1000 g) for 2 min. Due to the centrifugal force bacteria 
were centrifuged radially outward into the collection 
chambers preventing clogging of the filter. Samples have 
been taken from the collection chambers and the filters. 
Furthermore, the permeates have been collected (disk 
design including permeate chambers, not shown). To 
determine the bacterial concentration each sample has 
been plated and incubated overnight at 37 °C. 

The filters withstood the harsh conditions of 
continuous processing at 80 rotations per second for 
38 min. However, the filters were not as leak-tight as in 

the experiments with only 500 µl of E. coli suspension. 
Out of the 8 permeates 5 were completely free of bacteria. 
The other permeates contained only 10, 30, and 
1300 cfu ⋅ ml-1, respectively. However, considering the 
starting concentration of 1 ⋅ 108 cfu ⋅ ml-1, leakeage is 
extremely small since the concentration was reduced by 
roughly 5 orders of magnitude. 

Comparison of the bacterial count of the samples 
taken from the collection chambers with the samples 
taken from the filters yields a 24-fold enrichment of 
E. coli in the collection chambers. Thus, bacteria have 
indeed been centrifuged into the collection chamber. 

 Using equation 4, the time required for 
centrifugation can be estimated: With the parameters 
η = 1 mPa ⋅ s, rp = 1 µm, rp = 1.08 g ⋅ cm-3 [5], 
rf = 1.0 g ⋅ cm-3, ω = 500 Hz, Ri = 35 mm, and 
Ro = 48 mm the equation yields a centrifugation time of 
t = 70 s. Hence, to further increase the enrichment factor 
at the same rotational frequency the sample should be 
processed for a longer period of time due to the low 
volume flow rate. 
 
CONCLUSION 

In conclusion, the novel unit operation for axial 
centrifugal filtration successfully filters and enriches 
bacterial suspensions while sustaining the viability of the 
processed bacteria. The structure features leakage-free 
filtration at low volumes in the ml range. The centrifugal 
force continuously removes particles and bacteria form 
the filter in the radially outward direction, thus avoiding 
clogging of the filter. In addition, the concentration of the 
particles and bacteria in the retentate is even increased by 
this motion. Moreover, this approach allows for 
continuous sample input for processing large volumes in 
the liter range or even larger. Potential fields of 
application include all filtering processes particularly 
monitoring of water contaminations. 
 
OUTLOOK 

For processing large sample volumes of 5 l and more 
the filters need to be stabilized to prevent leakage. This 
can be implemented by optimization of the filter support 
structures and the bonding process. 

Furthermore, with axial centrifugal filtration 
available, this novel unit operation should be integrated 
with downstream unit operations for further processing of 
the retentate. For instance, when filtering water samples 
bacteria in the retentate could be genotyped via lysis, 
DNA extraction and qPCR analysis. Such an integrated 
disk would be highly appreciated as it does not only 
quantify the bacteria in the sample but also determines the 
species contained in it. 
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