Novel automated multi-principle volume calibration system for non-contact micro and nano liter liquid handling devices D. Liang¹, J. Zhang², T. G. Muniyogeshbabu², L. Tanguy², A. Ernst^{2,3}, P. Koltay^{2,3} and R. Zengerle^{1,2}

HSG-IMIT - Institut für Mikro- und Informationstechnik, Georges-Koehler-Allee 103, 79110 Freiburg, Germany IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany BioFluidix GmbH, Georges-Koehler-Allee 103, 79110 Freiburg, Germany

Overview

- Multi-principle volume measurement system
- 4 online + 1 (from 3) offline methods measure the same liquid aliquot (from pl to sub-µl)
- Full automated with software #Drop (dispension) sampling, processing, environment monitor
- Best tool to calibrate liquid-handling devices standardize liquid volume measurements

Working principle

A flow sensor is attached to the opening of the reservoir of a liquid handling device and detects t reflow during droplet ejection. The released drople travels sequentially through the electric field of a capacitive sensor, a 3mm gap allowing for strobos imaging and an optical sensor. At last, the droplet be characterized by Artel-MVS, or by an ultramicrobalance, or by a hydrogel coated QCM sens

	Measurement methods
n	Flow sensing method
ring	• Air reflow \rightarrow time integration \rightarrow volume
sing, ring) s and	 Calibrated with high precise pulsation-free syringe pump system (cetoni) Evaluated working range: <u>20 nl -100 nl</u> Capacitive sensing method
	C change when droplet flying through
he air- et	 → liquid volume Evaluated working range: <u>20 nl -100 nl</u> Imaging method Stroboscopic photographing of droplet in f
scopic t can	 Processing with auto-thresholding algorith Calibrated with NIST-traceable 1951 USA Evaluated working range 200 pl – 100 nl
sor.	Optical sensing method
ve	 Equal to one pixel camera High demand on alignment Emitter Artel Multichannel Verification System Filling MTP with automated x-y linear stage Commercialized traceable dual-dye absormeasurement system (Artel)
	Gravimetric regression method (GRM)
thod	 Extension of ISO 4787 Easy traceability to SI Expanded uncertainty (k = 2) ≈ 2.6nl - 13nl @ 5 nl - 1 µl Test liquid Against evaporation: numerical regressive compensation and silicon oil layer QCM method
nent	 Resonance freq. change → droplet mass Liquid → semi solid phase through surfac hydrogel coating Evaluated working range <u>200 pl – 15 nl</u>

BioFluidiX