Overview
- Non-contact dispenser for the microliter range
- Driven and regulated by pressure
- Direct control of the dispensed volume
- Autonomous temperature compensation
- One parameter change for 500 nl to 10 µL
- Viscosities from 1 to 17 mPas

Introduction
The precise non-contact dispensing of volumes between 250 nl and 25 µl is an important issue for in vitro-diagnostics (IVD), high-throughput screening (HTS) and industrial applications [1, 2]. Covering such a large volume range with high precision is a challenging problem, especially when non-contact dispensing of different liquids is required. Pipetting tools currently used present two main problems:
1 – Cross-contamination risks and cleaning protocols
2 – No online monitoring of the dispensed volumes
3 – Calibration for different liquids needed
Our system addresses these problems by using a pressure actuation and a pressure sensor to control the dispensed volume (patent pending).

Materials
Valve: Vermes MDV 3020A
Nozzle: PEEK – diameter 150 µm
Stepper motor:
Syringe: Braun Syringe 20 ml
Pressure sensor: HDIM100UF8P3 (SensorTechnics)
Difference pressure sensor 100 mbar
Sensitivity 10 mV/mbar
µController: MSP430F149 – 8 MHz

Working principle
- pressure sensor
- gas volume \(V_g \)
- sample liquid
- syringe reservoir
- piston

Typical dispense run
1 – Initial state \(P_0 \) = atmospheric pressure
2 – Syringe displacement \(P_1 \) = elevated pressure
3 – Opening of the valve Fluid is dispensed an pressure drops to end value \(P_2 \)

Why?
Because the volume of fluid dispensed \(V_{\text{fluid}} \) is proportional to the pressure integral \(I \)

\[
V_{\text{fluid}} = \int Q_{\text{fluid}} dt \approx \frac{1}{R_{\text{fluid}}} \int \Delta P dt \propto I
\]

R_{\text{fluid}} is the unknown fluidic resistance

How much fluid is dispensed?
Use of the Boyle-Marriott law after the dispense:

\[
p_0 \cdot V_g = p_1 \cdot V_1 = p_2 \cdot V_2
\]

and

\[
V_{\text{fluid}} = V_2 - V_1 = V_g \cdot p_0 \left[\frac{1}{p_2} - \frac{1}{p_1} \right]
\]

⇒ Direct relation between \(I \) and \(V_{\text{fluid}} \)
⇒ No calibration required
⇒ Autonomous correction based on measured sensor signal

Results
Liquid mass measurement by gravimetric method [3]:

Thermal drift compensation

Several fluid dispensed:
- 1 and 10 µL
- 24 dispenses/run
- Viscosities 1 → 17 mPas
- Surface Tension
- 30 → 70 mN
- Magnetic beads

Conclusion
- New pressure driven and regulated system
- Online verification of the dispensed volume
- Good accuracy (<3%) and precision (<5%) at 1 and 10 µL over a large range of fluids without calibration
- Successful real-time compensation of accuracy drift caused by viscosity changes due to temperature drift

Acknowledgements
We thank the German Federal Ministry for Science and Education (BMBF) for financial support through the project Smart Reagent Dosing (SFK 16SV5119).

References

Contact – More infos @ Booth #2032
Dr. Laurent Tanguy; laurent.tanguy@imtek.de