Smart pressure driven and regulated dispenser for the nanoliter and microliter range

L. Tanguy^{*,***}, A. Ernst^{*,**}, S. Bammesberger^{*}, R. Zengerle^{*},*** and P. Koltay ^{*,**}

* Laboratory for MEMS Applications, IMTEK, University of Freiburg, Germany ** BioFluidix GmbH, Georges Köhler Allee 103, 79110 Freiburg, Germany *** HSG-IMIT, Georges Köhler Allee 103, 79110 Freiburg, Germany

Overview

- **Non-contact dispenser** for the microliter range
- Driven and **regulated by pressure**
- **Direct control of the dispensed volume**
- Autonomous temperature compensation

MTEK

One parameter change for 500 nl to 10 µl

Working principle

Results

Liquid mass measurement by gravimetric method [3]:

Viscosities from 1 to 17 mPas

Introduction

The precise non-contact dispensing of volumes between 250 nl and 25 µl is an important issue for in vitro-diagnostics (IVD), high-throughput screening (HTS) and industrial applications [1, 2]. Covering such a large volume range with high precision is a challenging problem, especially when non-contact dispensing of different liquids is required. Pipetting tools currently used present two main problems:

 1 – Cross-contamination risks and cleaning protocols • 2 – No online monitoring of the dispensed volumes • 3 – Calibration for different liquids needed Our system addresses these problems by using a pressure actuation and a pressure sensor to control the Dispensed volume (patent pending).

ית] piston sample liquid dispenser 3 (2)(1) $\Delta x=0$ ΔX **Typical dispense run**

- 1 Initial state $\rightarrow P_0$ = atmospheric pressure
- 2 Syringe displacement \rightarrow P₁ = elevated pressure
- $3 Opening of the value \rightarrow Fluid is dispensed an$ pressure drops to end value $\rightarrow P_2$

When does the dispense end?

When the integral of the pressure signal reach $I(\mu C)$. Why?

Performance

FREIBURG

Conclusion

- New pressure driven and regulated system
- Online verification of the dispensed volume
- Good accuracy (<3%) and precision (<5%) at 1 and 10 µl over a large range of fluids without calibration Successful real-time compensation of accuracy drift caused by viscosity changes due to temperature drift

Materials

Valve: Vermes MDV 3020A

Nozzle: PEEK – diameter 150 µm

Stepper motor:

Syringe: *Braun Syringe 20 ml* Pressure sensor: *HDIM100UF8P3 (SensorTechnics)*

Difference pressure sensor 100 mbar Sensitivity 10 mV/mbar µController: *MSP430F149 – 8 MHz*

Because the volume of fluid dispensed V_{fluid} is proportional to the pressure integral *I*

R_{fluid} is the unknown fluidic resistance

How much fluid is dispensed?

Use of the Boyle-Mariotte law after the dispense:

$$p_0 * V_g = p_1 * V_1 = p_2 * V_2$$

and

$$V_{fluid} = V_2 - V_1 = V_g * p_0 \left[\frac{1}{p_2} - \frac{1}{p_1} \right]$$

- \rightarrow Direct relation between I and V_{fluid}
- → No calibration required

→ Autonomous correction based on measured sensor signal

Acknowledgements

We thank the German Federal Ministry for Science and Education (BMBF) for financial support through the project Smart Reagent Dosing (SFK 16SV5119).

References

- [1] R. Bosse et al. Drug Discovery Today, 42-47, 2000.
- [2] J. Woelcke et al., Drug Discovery Today, 6, 637-646, 2001.
- [3] D. Liang et al, Proc. MFHS Conference, 2012.

Contact – More infos @ Booth #2032

Dr. Laurent Tanguy; laurent.tanguy@imtek.de

