Reasons for the high power density of direct membrane deposition fuel cells revealed by impedance spectroscopy

<u>Severin Vierrath^{*1}</u>, Matthias Breitwieser, Matthias Klingele, Roland Zengerle¹ and Simon Thiele¹³

¹University of Freiburg, Department of Microsystems Engineering, Laboratory for MEMS Applications, 79110 Freiburg, Germany

²Fraunhofer Institute for Solar Energy ISE, Heidenhofstr. 2, 79110 Freiburg, ³FIT, University of Freiburg, Georges-Koehler-Allee 105, 79104 Freiburg, Germany * severin.vierrath@imtek.de

Klingele et al. showed never reached high power fuel cells by applying direct membrane deposition (DMD), excelling the peak power of a catalyst coated membrane (CCM) by a factor of 2.3. ^[1] To understand the underlying reasons for their high power, we identify the reasons and quantify their impact by employing electrochemical impedance spectroscopy.

As a result we show, that the main reasons for the high power of DMD fuel cells are (i) a 50% reduced high frequency resistance ($26 \text{ m}\Omega \text{cm}^2$) due to a thinner membrane ($12\mu\text{m}$) compared to state-of-the-art and (ii) a factor 2.2 reduced mass transport losses (0.12 Ωcm^2) due to increased water back diffusion through the thin membrane (Figure 1a). A comparison of DMD vs. CCM fuel cells at the maximum power point of the CCM shows that 91% of the DMD's improvement can be attributed to reduced mass transport losses and only 9% are caused by the reduction of the ohmic resistances (Figure 1b).

Figure 1 Comparison of a DMD with a CCM and a gas diffusion electrode (GDE) with membrane foil: a) Charge transfer resistance (R_{ct}) over current density. b) Impedance spectra at the maximum power point of the CCM, 2.2 A/cm², showing improved mass transport of DMD.

Keywords: direct deposited membranes, electrochemical impedance spectroscopy, charge transfer resistance, mass transport loss

[1] M. Klingele, M. Breitwieser, R. Zengerle, S. Thiele, J. Mater. Chem. A 2015, 3, 11239.