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Abstract: Self-reconstruction of Bessel beams in inhomogeneous media is 
beneficial in light-sheet based microscopy. Although the beam’s ring 
system enables propagation stability, the resulting image contrast is 
reduced. Here, we show that by a combination of two self-reconstructing 
beams with different orbital angular momenta it is possible to inhibit 
fluorescence from the ring system by using stimulated emission depletion 
(STED) even in strongly scattering media. Our theoretical study shows that 
the remaining fluorescence γ depends non-linearly on the beams’ relative 
radial and orbital angular momenta. For various scattering media we 
demonstrate that γ remains remarkably stable over long beam propagation 
distances. 
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1. Introduction 

The probability to induce nonlinear optical processes such as multi-harmonic generation or 
multi-photon excitation but also stimulated emission depends on the quantum state of an atom 
or molecule. But, it also depends on the intensity of the light interacting with that molecule. 
The phase delay between individual photons that hit the molecule’s interaction cross-section 
defines the interference intensity and thereby the interaction probability. The relative photon 
phases δφ(r) depend on their state of coherence, but also on the relative linear and orbital 
angular momentum between the photons, δћk(r) = ћδ[∇φ(r)] and Δћl. Thereby, the 
correlations in momentum and phase between the many photons propagating through a large 
scattering medium determine the space-variant interactions between photons and molecules 
inside the large object [1,2]. These spatial variations have a strong impact especially on 
modern light microscopy techniques. 

It could be shown, that the initial phase profile of a laser beam with confined linear radial 
momentum increases the beam’s penetration depth in a strongly scattering medium [3]. In 
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other words, the initial distribution of phase and momentum determines the ratio of ballistic 
and diffusive photons while propagating through large dielectric media. This unexpected 
effect led to an improvement of light-sheet based (LSB) microscopes, where slightly focused 
laser beams illuminate only that part of the object, which is in the focal plane of an imaging 
system [3,4]. The ultimate goal of these LSB microscopes is to generate a light sheet as thin 
as possible that penetrates as deep as possible into large biological samples without significant 
beam spreading and scattering. 

The usage of self-reconstructing beams with narrow-band radial momentum, such as 
Bessel beams, enables high penetration depths and large depths of field at relatively high 
numerical apertures. However, due to their inherent extended ring system, which transports 
self-healing photons, image contrast is reduced in line-scanning LSB-microscopy [5,6]. A 
completely different technique, STED, uses stimulated emission to enable super-resolution in 
point scanning microscopy by depleting unwanted excited fluorophores [7,8] very locally 
around the center of the focus. A combination of both techniques, microscopy with self- 
reconstructing beams (MISERB) and STED-microscopy both in line-scanning mode, could 
enable ultra-thin light sheets even in thick scattering media. The realization of such a 
combination would require that first both the fluorescence excitation beam and the 
fluorescence depletion beam (STED beam) exhibit self-reconstructing capabilities in 
inhomogeneous media. Second, their difference in radial and orbital angular photon 
momentum, Δћkr and Δћl, must be matched such that the depletion efficiency is optimal and 
remains approximately propagation invariant despite significant scattering and loss in the 
photons’ phase correlation. 

Other techniques to increase the contrast in light sheet based microscopy are the use of a 
line confocal pinhole in the detection path [6,9,10], structured illumination [5,11–14] or the 
use of multi-photon excitation [15–17]. Compared to these techniques the combination of 
Bessel beam light sheet microscopy and the STED principle enables the realization of 
potentially arbitrarily thin light sheets and thus arbitrarily high contrast and resolution 
perpendicular to the image plane, while still profiting from the increased penetration depth of 
Bessel beam illumination [3]. Unlike with structured illumination there is no need to record 
multiple raw frames per image, which makes this technique faster and eliminates the need for 
any post processing. It is furthermore less cost-intensive than two-photon excitation and 
despite the lower excitation and depletion wavelengths it also potentially less photo-toxic. 
This is due to the fact the light intensities involved in STED microscopy are up to 3 orders of 
magnitude smaller than the ones involved in two-photon microscopy. 

Among the few studies that investigate the combination of light sheet microscopy with the 
STED [18–20] principle, only one theoretical study [20] investigates a static Bessel beam in 
an ideal, non-scattering environment and the depletion of the Bessel ring system. 

In this paper we investigate theoretically and by computer simulations the relation 
between the radial and orbital angular momentum of the excitation beam and the depletion 
beam optimizing the depletion beam pattern in light sheet based microscopy with Bessel beam 
illumination. In this context, we investigate the stability of the depletion in strongly scattering 
media and show that it is possible to form superior light sheets using this illumination scheme 
compared to conventional Bessel or Gaussian beam illumination. 
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2. The STED-MISERB principle 

The combination of these two microscopy techniques requires a phase shaping element that 
generates two different self-reconstructing beams, which are characterized by a very narrow 
radial angular spectrum. The first beam excites fluorescence proportional to its illumination 
intensity ( ) ( ) 2

EX, , , ,EXI r z E r zϕ ϕ=  which, in the ideal case, is a 0-th order Bessel beam 
with electric field ( ) ( ) ( )EX 0, , expEX r zE r z A J k zk r iϕ = ⋅ ⋅ . The second beam depletes the 
fluorescence excited in the sample by stimulated emission except for a defined area in the 
beam center, where the beam intensity ( ) ( ) 2

ST, , , ,STI r z E r zϕ ϕ=  must drop to zero by 
destructive interference. This can be achieved by a Bessel beam of order l ≠ 0 and field 

( ) ( ) ( ), expST ST r zE r A J k r i k zϕ α ϕ= ⋅ ⋅ +    , which has a non-zero orbital angular 
momentum in addition to the narrow- band radial linear momentum. 

 

Fig. 1. Schematic of STED-MISERB principle. The excitation beam and the depletion beam, 
with intensities IEX(r) and IST (r), differ in angular momentum ћl and radial momentum ћkr. The 
resulting fluorescence F(r) is a long thin light needle. 

The angular spectra, i.e. the lateral Fourier transforms of the beams’ fields, are δ-ring 
shaped: 

 0 0

0 0

( , ) ( NA )

( , ) ( NA )

EX r EX r

i
ST r ST r

E k E k k

E k E k k e ϕ

δ
δ

ϕ
ϕ α

= ⋅ −

= ⋅ − ⋅ 





 

 
 (1) 

The radial linear momentum scales with k0⋅NA = 2π/λ ⋅ n⋅sinθ and is further enhanced by a 
factor α for the STED beam, corresponding to potentially different NAs of the excitation and 
the STED beam respectively. Figure 1 shows the schematic of the STED-MISERB setup, 
where both beams are displayed by their intensities in position space I(r) and by their ring-like 
power spectra in reciprocal Fourier space Ĩ(kr). After combining the beams by a beam splitter, 
both beams propagate through a cluster of dielectric spheres, which are embedded in a 
fluorescing gel and serve as a model system for a scattering medium. During propagation, 
both beams are multiply scattered at the spheres, such that the intensity of each beam is 
characterized by interference patterns that become the less correlated to the initial profile the 
longer the beams propagate. 
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The resulting fluorescence ( ) ( ) ( ) ( )fext l EXCF Q Iη≈ ⋅ ⋅ ⋅r r r r  is approximately proportional 
to the extinction cross-section Cext(r) and the quantum efficiency Qfl of the fluorophores, to 
the excitation intensity IEX(r) and the probability for spontaneous emission η(r). A useful 
expression for this space-variant distribution is ( ) ( )( )/ I II rr sat sat STη +=  [21], which depends 
on the intensity of the STED beam IST(r) and the saturation intensity 

( ) ( )hc fl STsat ED STEDI k σ λ⋅=  at which the rates of depletion and fluorescence equal each other, 

ST flκ κ=  (see inset of Fig. 1). 

3. The optimal STED beam in the non-scattering case 

In a first step we aim to determine the optimal focusing of the STED beam relative to the 
excitation beam, i.e. we seek the optimal ratio of radial momentum ( ) ( ), ,r ST r EXk kα =    and 
the optimal angular momentum   of the depletion beam in the absence of scatterers. In order 
to make STED-MISERB as energy efficient as possible and to minimize bleaching and 
potential photodamage, the overlap of the depletion beam with the excitation beam should be 
maximal in the ring system of the excitation beam and minimal in its center. The overlap 
between both beams, which differ in their phases through   and α, can be quantified by the 
normalized cross correlation coefficient of the corresponding intensity distributions [22]: 

 1 (r( , ) (r') ,', ) r dr'
out

in

r

EX STA r
I Iρ α α ′= ⋅ ⋅   (2) 

Here 2 2(r') r'dr' (r') r'dr'
out out

in in

r r

EX STr r
A I I⋅=    is a normalization term. The beam overlap in the 

ring system ringρ  is obtained by integration from the inner radius 0inr r=  to the outer radius 

outr → ∞ , whereas centρ  is obtained by integration from 0inr =  to 0outr r→ . 
1

0 ,2.4048 r EXkr −⋅= , the first root of the Bessel beam, is chosen as the radius discriminating the 
center region from the ring system (see inset of Fig. 1). The beam overlap is optimized if 

diff ring centρ ρ ρ−=  becomes maximal for all relative linear radial momenta α and orbital 
angular momenta   being experimentally relevant. 

The effect of the depletion beam on the resulting fluorescence distribution is quantified by 
the spatial fluorescence ratio ( , )F α , which is defined by the integrated fluorescence in the 
central beam region [23] relative to the integrated fluorescence in the ring system: 

 
2 2

0

2 2
0

(x, y, , ) dxdy
( , )

(x, y, , ) dxdy

x y r

x y r

F

F
F

α
α

α
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
 (3) 

Since the fluorescence distribution ( )( ), STF r I r  strongly depends on the STED intensity 
( )STI r , this ratio also strongly depends on ( )STI r . The spatial fluorescence enhancement 

( , )γ α  due to the depletion by the STED beam is defined as: 

 
0,(I , )

( ,
, )(I

)
0 ,

ST

ST

F

F

αγ α
α

>
=

=





 (4) 

In order to find the optimal momenta optα  and opt , the ratio ( , )γ α needs to be 
maximized too. 

As ideal Bessel beams contain an infinite amount of energy, we approximate the ideal 
Bessel beam by a focused Gaussian beam with conical phase profile. In order to generate a 
Bessel beam of order  , the conical phase is modulated with an azimuthal phase 

( )r, ko NA rϕφ ϕ⋅= +  , which can easily be realized with a spatial light modulator. The field 
magnitudes of the incident Gaussian beams are ( )2 2exp r / EXw−  and ( )2 2exp r / STw−  for the 
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excitation and depletion beam, respectively. The beam widths w are adapted such that the 
resulting Bessel beams are of equal lengths, 0.8 / 0.8 /EX EX SFWHM T STw n NA w nL NA≈ ≈ , where 
n is the refractive index of the propagation medium [24–26]. 

In order to perform our study as close as possible to potential experiments, we used an 
excitation wavelength of 488EX nmλ =  in water (n = 1.33) and a depletion wavelength of 

560ST nmλ =  [27] for the numerical evaluation of the beam overlap diffρ  and the 
enhancement of the fluorescence ratio ( , )γ α . The fluorophore parameters 

8 22.3 10 ;EX mσ μ−≈ ⋅ 28.2 11 0ST mσ μ−⋅≈  and 1 2.5fl fl nsτ κ − ≈=  were based on the green 
fluorescent protein (GFP) [28–30], resulting in a saturation intensity of 212 /sat mWI mμ≈ . 
As shown in Fig. 2, the relative radial and orbital angular momenta between both beams could 
be optimized by maximizing the beam overlap and the spatial fluorescence enhancement 
within the momentum ranges   with 1 5=  and ,ST ,kr r EXk α=   with 0.1 1.6α =  . The 
experimentally relevant parameters of the excitation beam were 10EX µmω =  and 

, 2 /r EX EX EXk NA π λ= ⋅  with 0.25EXNA = . Figure 2(a) shows the beam overlap diffρ , which 
peaks for 3, 1.1α= =  (red curve) and 4, 1.3α= =  (cyan curve). The spatial fluorescence 
enhancement γ  was analyzed for two typical STED powers STP . Figure 2(b) shows the 
results for 1STP W= , which can be easily achieved with a cw fiber laser. The optimal relative 
beam momenta in this case are 3, 1.1α= =  (red curve) and 4, 1.2α= = (cyan curve), 
which fits very well to the momenta optimizing the beam overlap as shown in Fig. 2(a). 

 

Fig. 2. Dependency of the beam overlap and the spatial fluorescence enhancement on the linear 
and angular beam momentum in STED-MISERB without scattering. (a) Beam overlap for 

1...5=  in dependence of α and fluorescence enhancement for laser powers (b) 1STP W=  
and (c) 100STP W= . (d) Normalized beam profiles and resulting fluorescent signal for 

1 , 3, 1.1STP W α= = =  and 100 , 3, 0.3STP W α= = = . 
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In a pulsed depletion scheme the peak power of the STED beam can easily reach 
100STP W=  resulting in the γ distribution shown in Fig. 2(c). Here the optimal beam 

momenta give rise to even more pronounced γ-values at 2, 0.2α= = (green curve) and 
3, 0.3α= =  (red curve). The optimal relative radial momenta are smaller for higher PST, 

which per se results in a suboptimal beam overlap in the ring system (see Fig. 2(d)). This is 
however not required for an efficient depletion due to the high STED peak power. It is more 
important to keep the beam overlap in the center as small as possible in order to minimize the 
depletion in the center, which is possible with a small relative radial momentum α. Figure 
2(d) displays the normalized beam profiles for the excitation and depletion beams as well as 
the resulting fluorescence distribution for both sets of beam momenta optimizing the 
fluorescence ratio. In both cases an efficient depletion of the ring system can be achieved, 
suppressing the peak fluorescence signal in the ring system to only 2.2% and 0.7% of the 
fluorescence signal in the center for 1STP W= and 100STP W= , respectively. 

4. The optimal STED beam in a strongly scattering medium 

After having introduced the spatial fluorescence enhancement ( , )γ α  to assess the STED 
quality for different orbital angular momenta l and relative radial momenta α, it is now the 
goal to test the stability of ( , )γ α during beam propagation through different strongly 
scattering media. The stability of ( , )γ α  depends on the propagation stability of the 
excitation beam and the STED beam. The total fields (x, y, z)EXE  and (x, y, z)STE  
propagating through an inhomogeneous medium are calculated numerically using the beam 
propagation method [31]. This iterative method relies on a separation of the refractive index 
distribution (x, y, z)n  into a constant and space variant part (x, y, z) (x, y, z)med nn n δ= + .The 
simulation domain is divided in x y zN N N× ×  volume elements and the total fields of the 
excitation and the STED beam are computed iteratively in planes perpendicular to the 
propagation direction z, such that the fields in the plane z + dz are given by 

 
22 2 2

00 (x,y,z)1( ) FT ( , , z) me xd y ik n dzi k dzk

x

k

y

n eE x, y,z + dz eE k k
δ⋅− − − ⋅⋅ =   ⋅⋅  (5) 

Here 1[..]FT −  denotes the inverse Fourier-Transform in x and y. 
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Fig. 3. Stability of the spatial fluorescence enhancement ( , )γ α  upon propagation through 
different scattering media. (a) Distortion of a plane wavefront upon propagation through a 
scattering medium. (b) Variance of the scattering induced phase shift, averaged over 10 sample 
realizations. The error bar indicates the standard deviation. (c) Stability of the fluorescence 
enhancement factor upon propagation through two different sphere densities for a depletion 
beam with 1 , 3, 1.1STP W α= = = . The inset shows a slice through the excitation beam in a 
sample with Cvol = 2%. The dotted lines indicate the region 0 0r r−  , discriminating the 
center of the beam from the ring system. (d) Spatial fluorescence enhancement for different 
Var[ ]δφ  after propagation through the sphere clusters. The inset shows a xy slice through the 
fluorescence signal at z = 0µm for Cvol = 2%. The dotted circles indicate the center of the 
beams. The scale bar is 2µm. 

To evaluate the propagation stability for inhomogeneous media with different scattering 
strength we introduce the variance of the phase shift ( ), ,x y zδφ  after a specific propagation 
distance z as a measure. The quantity 2Var[ (z)] (z)= σδφδφ  

 ( ) ( )( ) ( )( )22

2
max

1Var[ (z)] , , , , ), (,
r

x y z x y z x y z z dxdy
π

δφ δφ δφ δφ δφ= − = − (6) 

is calculated for a plane wave with field ( )pwE r  propagating through a cluster of spheres. 
Here the symbol .. designates the average in x and y. Each scatterer induces a local phase 
delay on the wave front and thus increases ( ) ( ), , ,z arg ( z ) ( z, , ),end pw end i endx y x y x yφδφ = −E  
or Var[ (z)]δφ , respectively. This is illustrated in Fig. 3(a). This measure allows the 
characterization of the scattering medium taking into consideration the change of the 
wavefront, which is crucial for coherent beam formation. Other measures as for example the 
scattering coefficient do not directly take this change into account. 

After propagation through a cluster of spheres, Var[ ]δφ  increases with the volume 
concentration CVol of the dielectric spheres, or correspondingly with (x, y, z) ( )Voln n Cδ δ= . As 
shown in Fig. 3(b), the increase is nearly linear for both a plane wave and a superposition of 
plane waves such as a Bessel beam. Var[ ]δφ in Fig. 3(b) was computed by averaging the 
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phase variance after propagation through ten clusters of spheres each with a different random 
bead distribution with the same concentration, bead size and refractive index. The clusters 
where 47 µm long and the beads with refractive index 1.41sn =  were embedded in a medium 
with index 1.33medn = , such that (x, y, z) 0.08nδ = . The simulations were performed on a 
grid with 512x y zN N N= = = pixels and a pixel size of / 4 92exdx dy dz nmλ= = = = . 

In order to analyze the stability of the spatial fluorescence enhancement upon propagation 
through a scattering medium relative to a homogeneous medium [20], we computed the ratio 

homo/scatγ γ of the enhancement factors. homoγ considers the natural beam spreading inherent 
also in homogeneous space. The change of homo/scatγ γ over the propagation distance of 47 µm 
is shown in Fig. 3(c) for a weakly scattering medium with C = 0.1% of beads with radii r = 
0.55µm and a strongly scattering medium with C = 2% (same beads). The curves 

homo/scatγ γ are averaged from 10 different clusters for a depletion beam with 
1 , 3, 1.1STEDP W α= = = . It should be noted that even in the strongly scattering media the 

maximum decrease of scatγ compared to homoγ  is only 35%. Remarkably, this ratio recuperates 
upon further propagation through the scattering sample, since scatγ  and homoγ  approach each 
other while both decay for larger distances z. In this context, but more general, Fig. 3(d) 
reveals that the effective fluorescence depletion expressed by γ decreases only moderately by 
35% and 40% with increasing scattering strength of the medium, expressed by the phase 
variance Var[ (z)]δφ . This unintuitive effect, which represents the most important result of 
the study, is demonstrated for two depletion beams with different linear radial and orbital 
angular momenta ( 3, 1.1α= =  and 4, 1.3α= = ), which have shown to be the optimal 
beams in the non-scattering case. 

5. Light sheet generation in a strongly scattering medium 

In order to assess the ability of the STED-MISERB configuration to create a thin light sheet 
even in a strongly scattering environment, we computed the light sheet fluorescence 
distribution that is generated by sweeping the illumination and the depletion beam over a field 
of view with extent 2xm: 
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The fluorescence distribution, of this novel type of light sheet is compared to the 
fluorescence generated by a scanned Bessel beam and a scanned Gaussian beam alone. All 3 
light sheets were computed for a distribution of randomly placed spheres (r = 0.55µm) with C 
= 2%. The parameters of the depletion beam were 3, 1.1α= =  and 5STP W= . The NA of the 
Gaussian beam was NA = 0.08 and was chosen such that the lengths of the Gaussian beam 
and the Bessel beam equal each other. 

In order to assess and display the quality of the light sheet, we averaged the fluorescence 
distribution over the axial range of 2 23z µmΔ ≈  centered around the peak intensity of each 
beam: 0
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−Δ≈ ⋅  . The averaged light sheet cross-sections , ( , )LS zF x y  
are shown for all 3 illumination modes in Fig. 4(a). Figure 4(b) displays the fluorescence 
distributions of the static beams in the center of the field of view, again averaged over 2 zΔ . It 
can be seen that the STED-MISERB light sheet features the thinnest main peak, even though 
it also has a weak but broad background compared to the Gaussian beam. While STED-
MISERB and Bessel light sheet exhibit smooth average intensity profiles as a result of the 
self-reconstruction capabilities of the Bessel beams, the average beam profile of the Gaussian 
beam clearly shows inhomogeneities caused by the scattering medium. This is also 
highlighted in Fig. 4(c), where the intensity profiles ,x ( )LS zF y give an estimate of the light 
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sheet thickness. Here ,x ,
1

2(y) (x, y) dx
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≈ ⋅   is obtained by the x-projection of 

, ( , )LS zF x y . The absolute value of the Fourier transform of ,x ( )LS zF y  shows that STED-
MISERB features the largest amount of spatial frequencies ky above the cutoff frequency of 
the Gaussian beam spectrum. This indicates the high axial resolution that can be achieved in 
3D imaging even in scattering media using the concept of STED-MISERB: for a cutoff 
frequency of ky,max = 10/µm, a so far unreached axial resolution of Δy ≈2π/ ky,max ≈0.6µm 
inside the scattering object is possible. The axial resolutions that can be realized with the 
convential illumination modes are Δy ≈0.9µm for the Bessel light sheet and Δy ≈1.1µm for 
the Gaussian light sheet, indicating a resolution increase for the STED-MISERB light sheet of 
33% and 45%, respectively. 

 

Fig. 4. Spatial extents of light sheets and single beams. (a) Average fluorescence distributions 
of a Gaussian, Bessel and STED-MISERB light sheet in a scattering medium of beads with r = 
0.55µm and CVol = 2%. The fluorescence distribution is averaged over 2 23z µmΔ ≈ . (b) 
Averaged single beam profiles of the corresponding beams. (c) xz-projection ,x ( )LS zF y of the 
light sheets and the corresponding magnitude of its Fourier transform. 

6. Summary and conclusions 

We have shown by theoretical modelling and computer simulations that it is possible to 
generate light sheets with superior properties even in inhomogeneous media by the 
combination of self-reconstructing Bessel beams and the STED principle. The goal in light 
sheet based microscopy is to excite fluorophores only in a very thin section within an 
extended, scattering object. However, scattering deteriorates the illuminating wavefront, 
induces local phase delays, generates strong intensity variations within the illumination beam 
and thus hinders a smooth, homogeneous, spatially confined fluorescence excitation. 
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Although it has been shown in earlier studies that Bessel beams reveal a significantly more 
stable propagation through inhomogeneous media than conventional Gaussian beams [3,31] 
the efficient application of the STED principle over long propagation distances has been 
demonstrated only in unrealistic homogeneous media [20], but not in scattering media. 

We could show that efficient depletion of fluorophores in the ring system of the Bessel 
beams by the STED principle results in a very thin and long, needlelike fluorescence 
distribution even in scattering media. The scattering strength was characterized by the phase 
variance induced after propagation through the medium. We could achieve an optimal 
intensity matching of the excitation beam to the STED beam by optimizing the relative radial 
linear momenta α and the orbital angular momentum  between both Bessel beams. Therefore 
we had to evaluate quality parameters describing the cross-correlation of both beam intensity 
distributions. These are on the one hand the overlap ( ),diffρ α   between both beams and on 
the other hand, the spatial fluorescence enhancement ( ),γ α  , expressing the fluorescence 
depletion in the ring system relative to the fluorescence in the beam center. Different to 
conventional STED using point-scanning applied in weakly scattering objects, in our study 
the quality factors ( ),γ α  , and ( ),diffρ α   have to remain nearly invariant along a beam 
propagation distance of 50 µm in strongly scattering media. By BPM simulations we found 
that the optimal radial and angular orbital beam momenta obtained for the homogeneous case 
can be transferred to apply the STED principle also in various scattering media. 

This remarkable result expresses that despite significant local phase delays in each beam, 
the global phase difference between both beams is sufficiently small to deplete the 
fluorescence efficiently in the ring system, but hardly in the beam center. Depending on the 
depletion beam, the effective depletion expressed by γ, decays by less than 35% or 40% 
respectively after 50µm propagation of two Bessel beams through an inhomogeneous 
medium, which can deteriorate the beam profile of conventional Gaussian beams 
significantly. We believe that our study helps to better understand the propagation behavior of 
phase modulated waves in inhomogeneous media and thereby to design novel types of light 
sheet microscopes. 
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