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Abstract: Back-focal plane (BFP) interferometry is a very fast and precise 

method to track the 3D position of a sphere within a focused laser beam 

using a simple quadrant photo diode (QPD). Here we present a concept of 

how to track and recover the 5D state of a cylindrical nanorod (3D position 

and 2 tilt angles) in a laser focus by analyzing the interference of 

unscattered light and light scattered at the cylinder. The analytical 

theoretical approach is based on Rayleigh-Gans scattering together with a 

local field approximation for an infinitely thin cylinder. The approximated 

BFP intensities compare well with those from a more rigorous numerical 

approach. It turns out that a displacement of the cylinder results in a 

modulation of the BFP intensity pattern, whereas a tilt of the cylinder 

results in a shift of this pattern. We therefore propose the concept of a local 

QPD in the BFP of a detection lens, where the QPD center is shifted by the 

angular coordinates of the cylinder tilt. 
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1. Introduction 

In recent years optical tracking of nanorods and dipole emitters have attracted considerable 

interest in various disciplines. On the one hand, position and orientation tracking of dipolar 

light emitters such as fluorophores have led to a significant progress in localization 

microscopy techniques (e.g. STORM, PALM) enabling super-resolution optical imaging in 

three dimensions [1–3] or in biophysical single-molecule experiments [4]. On the other hand, 

nano-sized cylindrical rods can serve as flexible building-blocks in nano-technology because 

of various optical and electrical properties, which can be controlled by their bulk material, 

size and environment [5]. Furthermore, nanorods point-out a strong potential as probes for 

photonic force microscopy to measure local hydrodynamics, to scan surfaces [6–11] or to 

determine visco-elastic environments [12], especially in bio-sciences. 

The most promising tool to manipulate these nanorods in five dimensions (3 directions in 

displacement, 2 different orientations) are optical tweezers, which can easily be moved in 3D 



space, can be multiplexed in space and time [13–15] or can be reshaped by computer-

holograms [16]. 

Nanorods are advantageous for optical trapping because of their typically upright 

orientation due to an increased volume overlap with the axially extended laser focus. This 

leads to an increased overall polarizability and increased optical forces relative to spherical 

probes of comparable volumes [17–21]. The ability to measure changes in displacement and 

orientation either due to Brownian motion or due to external forces and torques make 

optically trapped nanorods a multi-modal and very sensitive sensor for the bio-nano-sciences 

[22]. This has been achieved recently with video microscopy, but the slow frame acquisition 

rates often make it impossible to measure microsecond position changes and millisecond 

relaxation times as relevant for many applications. Optical trapped nanorods have been 

tracked in their 2D position with quadrant photo diodes (QPD) [23] or with additional 

separation of the 3D position and 2D orientation fluctuation relaxations [24]. 

However, the simultaneous tracking of the 3D position and of the orientation of a nanorod 

without post-processing of camera images has not been achieved yet – neither with coherent 

nor with incoherent imaging [25]. 

The fastest and most precise 3D tracking technique is back focal plane (BFP) 

interferometry [26–28]. Although the tracking range is limited to the extents of a laser focus, 

tracking rates of more than 1MHz [29] can be achieved and precisions of 1-5 nm [27]. 

In this study we demonstrate theoretically how to achieve 5D tracking of a cylindrical 

probe in a highly focused laser beam by using back-focal plane interferometry. We show both 

numerically and analytically that the 3D position and 2D orientation of the nanorod can be 

determined over a sufficiently large range of displacements and orientations approximately 

independent of the other dimension. Due to a simple mapping scheme, hardly any post-

processing is required enabling online-monitoring of the particle fluctuations. 

2. Back focal plane interferometric tracking 

The concept of back focal plane (BFP) interferometry to track the 3D position of a sphere is 

extended to track the 5D state of a cylindrical particle in a focused laser beam. This method 

exploits the interference of the light scattered at the particle and the unscattered light, which is 

captured by a detection lens DL (see Fig. 1). A sensor in the BFP records the interference 

intensity from the scattered and unscattered electric field. 

2.1 Spherical particles 

The intensity distribution ( , , )x yI k k b , described by the Fourier plane coordinates kx and ky, 

changes uniquely with the position b(t) = (bx(t), by(t), bz(t)) of the particle roughly over the 

extent of the laser focus. 

The intensity distribution ( , , )x yI k k b in the BFP is a superposition of the 

incident ( , )i x yE k k  and the scattered field , ),(s x yE k k b . 
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 (1) 

where the position dependent difference of the phase of the incident and scattered field can be 

separated for small displacements b into 3 nearly orthogonal phases ΔΦj(bj), which only 

depend on sphere displacements in direction bj (with j = x, y, z): 



        x y yΔΦ , , ΔΦ , , ΔΦ k ,k ,b ΔΦ , ,x y x x y x y z x y zk k k k b k k b  b  (2) 

A small displacement bj is a shift of not more than about half the FWHM extent of the focus 

in the specific direction j = x, y, z. 

Typically two quadrant photo diodes (QPD) are used [30] for the 3D tracking of a 

spherical particle. QPD #1 is completely illuminated by  , ,x yI k k b
and provides the lateral 

position signals Sx(b) and Sy(b), whereas QPD #2 only records the central part 

of ( , , )x yI k k b and provides the axial signals Sz(b). 

The three position signals Sj(b), are extracted by integrating the intensity over a certain 

area, which is determined by a filter function Hj(kx, ky). 

      , , ,j x y j x y x yS I k k H k k dk dk b b  (3) 

The filter Hx(kx, ky) generates the difference from the signals of the upper two and the lower 

two QPD-quadrants, whereas Hy(kx, ky) generates the difference from the signals of the left 

and right quadrants. Hz(kx, ky) simply generates the sum of all four quadrants to provide the 

axial position signal Sz. 

For small displacements we assume the position signals to be linear and mutual 

orthogonal 

  0 0( ) 2 ( )  cos ΔΦ( )j j j i s j j j x y j j jS b S I I b b H dk dk S g b     (4) 

The calibration factor gj is the detector sensitivity in the direction j = x, y, z. The intensity 

offset S0j is typically zero for the lateral directions and can be subtracted in z-direction. 

Orthogonality means that a position signal for the displacement in one direction is 

independent of the displacement in all other directions such that Sj(bj) Sk(bk) = δjk. The off-

diagonal entries of the sensitivity matrix ĝ are negligibly small for small particle 

displacements: 

   0  ˆ  S b S g b  (5) 

2.2 Cylindrical particles 

For non-spherical particles, such as cylinders or ellipsoids, also their orientation is of interest. 

This requires two further orientation signals, which are more complicated to extract from the 

interference pattern 2

i x y s x y| ( ) ( ) |, , ,E k k E k k b since the phase changes due to particle re-

orientations and particle displacements are coupled. For a cylinder tilted on its long axis, for 

example, the position signals lose then their property to be linear and orthogonal [31]. 

As indicated in Fig. 1, totally five signals Sx(b), Sy(b), Sz(b), Sθ(b), S(b), are required 

according to the spatial state of a cylinder defined by its state vector b (generalized coordinate 

vector), which is composed of a vector of translation bt and a vector of rotation br. We define 

the center of the focus as the origin of the Cartesian coordinate system. The angle between the 

optical and the cylinder axis is the polar angle bθ. The azimuthal angle is b. The rotation 

angle bψ about the cylinder axis cannot be detected because of its intrinsic symmetry. We 

define 

      t r t r,   ;  , , ;  ,x y zb b b b b   b b b b b  (6) 



 

Fig. 1. Setup scheme for trapping and tracking. A cylinder is optically trapped in a laser focus 

and changes its center position and orientation due to external forces or thermal fluctuations. 
The interference intensity pattern of scattered and unscattered light is recorded by a sensor in 

the back focal plane (BFP) of the detection lens (DL). Zoom: a translated and tilted cylinder, 

described by a position vector bt and an orientation vector br = (bθ, b). 

3. Calculation of the electric field scattered at a cylindrical particle 

3.1 Rayleigh-Gans Theory 

A useful approach to calculate scattered fields at particles smaller or equal to the wavelength 

is the Rayleigh-Gans theory, also known as Born approximation. This approach assumes a 

single change of the k-vector of each incident plane wave (component), corresponding to the 

approximation that the field inside the particle does not change its angular spectrum, but only 

its amplitude. This amplitude is controlled by the polarizability α. 

The Rayleigh-Gans theory requires that the maximum phase shift of the incident field 

induced by a particle of length L and of refractive index ns relative to the surrounding medium 

with index nm is small, i.e. ΔΦ = L k0(ns-nm) << 2π. k0 is the wave number in vacuum, and k = 

nm k0 the wave number in the medium. The polarizability in the scalar case according to the 

Clausius-Mossotti relation reads α = 3V(ns
2
-nm

2
)/(ns

2
 + 2nm

2
), where V is the volume of the 

particle. We start with the inhomogeneous Helmholtz equation for the electric field 

        2 2

0 ˆ ²sk s n k E r α r E r  (7) 

which is characterized by a shape function s(r) describing the spatial extent of the scatterer 

with refractive index ns such that s(r) = 1/V inside and s(r) = 0 outside the scatterer. In 

general, however, the polarizability α̂ is a tensor. To simplify the math in this study and to 

better illustrate the ideas of our strategy, we use the scalar approximation of the electric fields 

and the polarizability. The total scalar field E(r) that solves Eq. (7) can be separated in an 

incident and a scattered field. 

              2 3  '   '   '   'i s i iE E E E k s E G d r    r r r r r r r r  (8) 

Here, we have applied the Rayleigh-Gans approximation by replacing the total field E(r) by 

the incident field Ei(r) in the Fredholm-integral. Essentially, the scattered field is a 

superposition of spherical waves G(r) driven with the local amplitude Ei(r) at every position 

within the volume of the scatterer. The scalar Green’s function G(r) is a solution of the 



homogenous Helmholtz equation. Using the convolution symbol (*), the approximated 

scattered field in the focal plane (FP) can be written as 

         2     s iE k E s G r r r r  (9) 

For a particle displaced and reoriented by the vector b, the shape function depends on two 

vector variables s(r,b). 

3.2 Scatter spectra in the Fourier domain 

Since our tracking scheme is based on BFP detection, we take the 3D Fourier transform of the 

scattered field ),(sE k b , which reads 

         
2

3

 

( )2
,   ,s i

kE G E s


 k b k k k b  (10) 

),(sE k b simplifies in the case of an incident plane wave 3

0 i(2 )( ) ( )iE E  k kk  to 

      2

0 i,       ,sE k G E s k b k k k b  (11) 

The form factor ( , )s k b  is the Fourier transform of the shape function, which is s(r,b) = 1/V 

inside the particle and s(r,b) = 0 outside. For a non-tilted cylinder of length L, of diameter D 

and of volume V = L (D/2)
2
π it is: 

  
 

 r1

r0

2 J /2

/2
sin c / 2z

k D

k D
s k Lk  (12) 

where J1 is the 1st order Bessel function and sinc(x) = sin(x)/x. 

If the cylinder is translated by bt, s(r-bt), we find the form factor modulated, 

t 0 t) (( ,  exp(    ) )s s ik b k k b . If in addition the cylinder is rotated by the angles br = (bθ, b), 

such that k is replaced by the Euler rotated vector k’(br) = Ry’(bθ)·Rz(b) ·k, the form factor 

for the general position state b can be expressed as 

         0 r t, FT ,   ' exp    s s s i    k b r b k b k b   (13) 

It is advantageous that the operations for tilting and translating can be separated into two 

factors. The first term 0 r  '[ ( )]s k b describes the rotation of the scatterer by br and is real for 

symmetric scatterers such as cylinders. The second is a pure phase modulation and describes 

the scatterer’s translation bt from the center of the focus. The used rotation matrices are 

defined as 

    y' z

cos (θ) 0 sin (θ) cos ( ) sin ( ) 0

θ 0 1 0 ; sin ( ) cos ( ) 0

sin (θ) 0 cos (θ) 0 0 1

R R

 

  

   
   

    
      

   (14) 

The convolution term in Eq. (10) for an arbitrary incident wave reads 

           3

i i 0 r i t i, exp ( )  i iE s E i d k     k k b k k b k k k bs      (15) 

Therefore the scattered field in k-space for an incident plane wave is 

        2

0 0, ,   i ti

s r iE k E G s e
   

k k b
k b k k k b

   
     k  (16) 



with ( )G k being the Fourier transform of G(r) as defined by Eq. (20). Assuming that the 

cylinder is a thin nanorod of length L and with diameter D << λ, it can be assumed to be a δ-

like needle oriented in z-direction. Therefore the form factor is infinitely wide in lateral 

directions and only depends on the kz component. The form factor of a very thin cylinder is 

    '

0 ' sin / 2zs c k Lk    (17) 

Now the Euler rotation of the cylinder is simplified massively, since k’z(bθ, b) = 

Ry’(bθ)·Rz(b) ·k·ez. Hence, we find for the rotated kz -component: 

            ' , sin cos sin sin cosz x y zk b b b b k b b k b k          (18) 

with kz = (k
2
-kx

2
-ky

2
)

1/2
. For a cylinder in the center of the focus and tilted only in the kxkz 

plane (bθ = 0), the form factor reduces to 

     2 2 2

0 , , sin sin( ) cos( ) / 2x y x x ys k k b c b k b k k k L        (19) 

 
Fig. 2. Rayleigh-Gans scattering of infinitely thin cylinder of length L. a) A plane wave with 

wave-vector ki incident on a tilted cylinder as local field approximation for the center of a 

focused field. b) The tilted form factor
0 , ,( )x zs k k b of the cylinder (as background in grey 

scale) is shifted by ki relative to the Ewald circle with radius ki = ks. The overlap (red circle 

area) defines the part of the angular spectrum of the forward scattered field Ẽs(kx) that is 

detected by a lens with NAdet = 0.9. c) The scattered field spectrum Ẽs(kx) as intersecting line 

between Ewald circle and form factor. 

The Fourier transform of the Greens-function is the Ewald sphere, which is a spherical 

cap 

  
 2 2 2 2 22

1 1

x y z

G
k k k kk

 
  

k
k

 (20) 

The determination of the scattered field in k-space as described by Eq. (16) can be illustrated 

graphically as shown in Fig. 2. In a so-called Ewald construction, the spherical δ-like surface 

( )G k is multiplied on the form factor 
0 ( ,[ ]  )r is k k b k , which is shifted by the k-vector of the 

incident wave ki. Figure 2(a) displays a thin cylinder of length L 2λ in the center of the focus 

tilted by bθ = 20° and an incident plane wave with ki = (0,0,k). Figure 2(b) shows the form 

factor in gray scale revealing the shape of a sinc-function also tilted by bθ = 20° and shifted 

upwards by ki. The Ewald sphere is displayed as a black circle, whereas the part of the half 

circle representing the forward scattered field captured by the detection lens with NAdet = 0.9 



is colored in red. The intersection is projected onto the kx-axes and is displayed schematically 

as ( )s xE k . 

4. Interference of the incident and scattered angular field spectrum 

In the following the angular spectrum representation of the 

fields
0

( , ) ( )
x y z

E k k E dk


  k propagating in positive z-direction is used, which is obtained by 

projecting the fields ( )E k  located on the positive (negative) half of the Ewald 

sphere ( )G
k with kz > 0 ( ( )G

k with kz < 0) onto the kxky plane. This allows to use the more 

compact formulation: 

      2 2 2, ,x y z x yG E E k k k k k k      k k  (21) 

Hence, the angular spectrum of the scattered field for an incident plane wave (Eq. (16)) is 

      2
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2( )
, , , , , i ti

s x y x y x y r i
kE k k E s k k k k k e



     
  
 k k b

b b k
   

     k  (22) 

The interference intensity consists of three terms as denoted in Eq. (1). Since the incident 

intensity will be canceled out or subtracted as will be shown in the next section, the 5D 

position vector b has to be extracted from the remaining two terms. 

In typical experimental situations the intensity of the incident field is removed 

electronically such that |Ẽi|
2
 will be removed in the following. The relevant difference 

intensity reads: 

  
2 2 2

s s t  2  si( ) ( ) ( ) ( ) n )Φ (diff i i s iI E E E E E E     b b b b b  (23) 

Here we used the fact that the phase of the scattered field Φs of a higher refracting particle in 

the Rayleigh-Gans-regime is π/2 behind the phase of the incident field Φi such that 

         i s tcos Φ cos Φ π / 2 Φ sin Φ     b b b  (24) 

The angular spectrum representation of a highly focused incident field without considering 

apodization is 

    2 2

0 0,i x y i x yE k k E step k NA k k     (25) 

with the Heavyside step function defined by step(x) = 1 if x  0 and step(x) = 0 otherwise. NA 

= nmsin(αm) is the numerical aperture of the focusing lens. This corresponds to the field 

distribution in the pupil plane of an objective lens. 

4.1 Calculation of the focused incident field 

The only slightly more complicated part in describing Eq. (23) is the complex amplitude of 

the scattered field Es(bt) at the scatterer position bt, which is defined by the amplitude of the 

focused incident field. Ei(bt) can be well described by a Fourier transform of the pupil plane: 
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with kz = (k
2
-kx

2
-ky

2
)

1/2
. This method is very flexible since it allows to consider many relevant 

focusing aspects, but requires numerical computation. Alternatively, Gaussian beam optics 

can be used, which is a paraxial approximation, but is helpful in our context, where 



interferometric tracking principles are to be developed. The field of a focused Gaussian beam 

can be written as 

    2 2 2
0 0 Φ , ,( ) (z) 

(z)
, , Gi x y zx y W

i

A W

W
E x y z e e   (27) 

with a phase function considering the Gouy phase shift by totally ΔΦ = π along the axial 

extent of the focus 
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 

   
02 2
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2 (z)
Φ , ,   a tan / z a tan / z

z

G
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x y z k z z k z z



        (28) 

Here, 
0A  is the field strength, W0 the beam waist at z = 0 and W(z) = W0[1 + (z/z0)

2
]

1/2
 for z  

0, R(z) = z[1 + (z0/z)
2
] is the radius of curvature of the wave-front and z0 = k W0

2
/2 is the 

Rayleigh length. The beam waist can be expressed by the NA of the lens such that W0 = 

2
1/2

λ/(π NA). From this it is possible to get a reasonable value for the complex amplitude 

0| ,( ) ( , |) [   ( / )     ]i t i x y z z zE E b b b exp iatan b z ik b  r b  at the center of the scatterer. 

4.2 Local Field Approximation 

Computing the scattered fields of a cylindrical particle in a highly focused laser beam is a 

complicated task. However, a particle, which is much smaller than the wavelength, is hardly 

affected by the spatial variation of the incident field across its extent. Therefore one can use 

the approximation of a local field with a mean phase at the center of the particle. In 

consequence, we assume that the particle “sees” an incident plane wave, which means that an 

incident plane wave is scattered according to Eq. (11). To account for the focused incident 

field we take the complex amplitude Ei(r = bt) of the focused beam. This approximation has 

turned out to provide scattering cross-sections for Rayleigh-Gans particles, which are not 

more than 20% away from the rigorously calculated scattered fields (Rohrbach – unpublished 

data). 

Applying the local field approximation with ki = (0,0,k), we can insert Eqs. (16) and (25) 

into Eq. (23) to obtain the interference part ( )diffI b of the total intensity. 
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 (29) 

The interference phase ΔΦt(k,bt) is determined by the phase of the scattered field translated 

by bt. Furthermore, we disregard the small changes of the lateral wavefront curvature in the 

local field approximation such that Φi(k,bt) = Φi (kz,bz). We find [32]: 
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 (30) 

Across the circular BFP of the detection lens, defined by
2 2 1/2

0( ( ) )x ystep k NA k k  the 

interference intensity reads: 

             
2

'

t, 2    sin / 2 sin Φ ,O

diff s i t z t tI E B E c k k L   k b b b b k b   (31) 

with factor B = Ei0 αk
2
 /(2π)

3
. The shape of the interference term in the BFP is determined by 

a sinc function for a cylinder tilt and by a sine function for a cylinder shift. These 



characteristic intensity distributions can be illustrated by applying the thin cylinder 

approximation of Eq. (19) with b = 0. For a cylinder in the beam center (bt = 0) the 

interference term sin(ΔΦt(kx,ky,0)) = 0 disappears and we find 

        
2

2 2 2, ,0, ² sin sin cos / 2O

diff x x x x yI k k b B c b k b k k k k L        (32) 

For tilt angles bθ < 30° and in the paraxial approximation, where kz = k - kx
2
/2k - ky

2
/2k the 

interference intensity with b = 0 results in 

     
2

2 2, ,0, ² sin / 2 / 2   / 2O

diff x x x x yI k k b B c b k k k k k L      (33) 

This equation is illustrated in Figs. 3(a)-3(c) for a cylinder at bt = 0 and for different tilt 

angles bθ = 0, 10°, 20°. The |sinc|
2
 function is shown as a bright circular region in the BFP and 

is shifted linearly with increasing tilt angle bθ as displayed in Fig. 3(d). The principle holds 

also for b  0 as shown in Figs. 3(e), 3(f), where b can be read out by the polar angle of the 

intensity’s center-of-mass. 

 

Fig. 3. Intensity difference ( , )
O

diff x y
I k k  in the BFP of the detection lens for a tilted cylinder. a-

c) The flat-top like intensity maximum shifted sideward if the cylinder is tilted (bθ > 0, b = 0). 

d) Corresponding intensity line scans. e,f) For b 0 the center of mass of
O

diff
I is shifted in 

direction of the tilt (bθ, b). 

 

Fig. 4. Influence of a cylinders length on the intensity difference ( , )
O

diff x y
I k k . With increasing 

length L the width of the flat-top like intensity maximum (red circle) is decreased. The tilt 

angle bθ is defined by the length of the circle’s center vector (arrow). 

The diameter of the sinc[(-kx
2
-ky

2
)L/(4k)] function is determined by the length L of the 

cylinder, such that the bright area becomes narrower for longer cylinders (see Fig. 4). 



Now, how does an additional shift bt of the cylinder change the intensity distribution in 

the BFP? To illustrate the multiplication with the sin[ΔΦt(kx,ky,bt)] function as described in 

Eq. (29), we extend Eq. (33) for the case bt = (bx,0,0) such that 

          
2 22

2
, , ,   0 sin / 2 sin

x yO

diff x y x s i x x x

k k

k
I k k b b E B E c b k L b k 

 
    

 
b (34) 

The combination of a cylinder shift and tilt is displayed in Fig. 5 with the interference 

intensities ,( , , )O

diff x y tI k k bb shown in gray scale and three line scans each on the right side. 

The multiplication with either sin(bxkx) as shown in Figs. 5(a)-5(c) or with sin(byky) as in Fig. 

5(d) reveals a modulation of the |sinc| function in the BFP, which is approximately linear with 

the cylinder displacement in the FP. Again, the tilt of the cylinder in the FP results in a shift 

of the circular region. This principle implies a 5D detection scheme, which is achieved by the 

method of a local quadrant photo-diode (QPD). 

 

Fig. 5. Tracking signals for a thin cylinder, which is both shifted and tilted. Left column: 

Scheme for shifted and tilted cylinders. Center column: Corresponding intensity 

difference ( ),O

diff x yI k k in the BFP. Right column: intensity line can ( ),0O

diff xI k illustrate the 

signal shift for a cylinder tilt and the bipolar signal modulation for a cylinder shift. 

A displacement bz of the cylinder in axial direction results in a spherical modulation of 

, ),( ,O

diff x yI k k bt
b with the axial phase 

1/2 22 2

0a tan ( /) z( )z x y zb k k k b   . The intensity 

modulation is ring like as illustrated by Fig. 6. 

 

Fig. 6. Intensity difference ( , , )
O

f ydif x
I k k b for axially displaced thin cylinders with arbitrary 

positions and orientations, decribed by the state vector b = (bt, br) = (bx,by,bz,b,bθ). A cylinder 

shift in axial direction results in a sphercial modulation of the signal. 



4.3 Comparison with rigorous numerical approach 

The analytical approach presented here contains a number of approximations, which were 

necessary to perform in order to derive a qualitative relationship between a cylinder tilt and 

shift and the interference intensity in the BFP. The qualitative correctness of the analytically 

approximated intensity O

diff x y( ), ,I k k b was therefore compared to rigorous numerical 

calculations using the in-house simulation software Lightwave
(R)

. Herewith a highly focused 

incident field with NA = 1.2 [33] was scattered at a cylinder of finite thickness D within the 

Rayleigh-Gans theory [31]. The numerical results confirm our evaluated principle that a 

cylinder shift / tilt in the FP results in a signal modulation/shift in the BFP as illustrated in the 

following Fig. 7. 

 

Fig. 7. Rigourously computed intensities ( , , )
O

f ydif x
I k k b for states b = (bx,by,bz,bθ,b) of a 

cylinder with finite thickness. The cylinder length is L = 0.8µm and the diameter is D = 0.1µm. 

The cylinders displacements are in units of 0.1µm. The round pattern , ),(
O

diff x y
I k k b is 

modulated in three cases and is shifted by the positions SP in e,f) to account for cylinder tilts. 

 

Fig. 8. Rigourously computed intensity differences ( , , )
O

f ydif x
I k k b for a tilted cylinder with 

positions b = (bx,by,bz, 20°, 45°) . The cylinder length is L = 0.8µm, its diameter D = 0.1µm 

and its refractive index ns = 1.57. The shifts are in units of 0.1µm. For a cylinder shift of bz, the 

blue-red patterns within the area of the local QPD rotate from the top row (bz = 0) to the 

bottom row (bz = 0.2µm) due to a multiplication with sin(ΔΦt(kx,ky,bz)). 



However, there are cases in which intensities O

diff x y( ), ,I k k b for different parameters look 

similar. Comparing for example, Figs. 8(d) and 8(f), one can see a slight clock-wise rotation 

of the bi-polar signal, which results from the spherical modulation of an axial cylinder shift. 

This effect, for instance, leads to an over-estimation of the cylinder shift along y. 

5. Five-dimensional tracking with a local QPD 

The goal of this study is to develop a tracking scheme, which allows to extract 5 signals Sx, 

Sy, Sz, Sθ, S for position and orientation out of the BFP interference intensity in the back focal 

plane, which is ,( , , , ), ,O

diff x y x y zI k k b b b b b   + const. In addition, the desired scheme shall 

provide a roughly linear relationship between a cylinder state bj and a signal Sj S0j + gjjbj, 

but also signals which are approximately independent of each other (j = x,y,z,θ,). The 

detector sensitivities gjj define an diagonal matrix such that 
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 (35) 

Based on the general BFP interference detection scheme introduced by Eq. (3), the spatial 

filter function ) ( )( , ) ( , , , , ( , , ( ), )x y x y z t x y xr yk k H H H H H k k k k  H H H  must provide the 5 

state variables bj. As pointed out and illustrated in the last section, the tilt angles (bθ,b) can be 

extracted from the center of mass position kc = (kxc,kyc) of the circular intensity region 

of ( ),O

diff x yI k k . The radius of this circular region depends on the cylinder length and shall be 

denoted as kL (see Fig. 9). This region can be described by a circular step function 

as  | |Lstep k 
c

k -k . 

 

Fig. 9. Intensity read out with a local QPD. a) Computed intensity difference ( , , )
O

f ydif x
I k k b  in 

the BFPDL for a cylinder with state vector b in a focused laser beam. b) Scheme for a read out 

using a local QPD: A disc aperture with radius kL, center position (kxc,kyc) and distance |kc|, and 

the local QPD quadrants A, B, C and D. c) Corresponding shift and tilt of the cylinder. 

The center of mass vector (kxc,kyc) is determined from the interference part O

diffI , which is 

evaluated above an intensity threshold defined by the 1/e fraction of the intensity maximum 
max

diffI  . The intensity above the threshold is defined as 
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From this the center of mass vector kc = (kxc,kyc) is obtained by the operation: 
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Having determined 
ck , the concept of a local QPD can be applied, which evaluates the 

bipolar signal modulation within the circular region. In other words, the difference of the 

upper and lower half of the integrated detector area ( | |)(2 ( ) 1)L c y ycstep k step k k   k k  

describes the vertical cylinder displacement and the difference of the left and right half, 

( | |)(2 ( ) 1)L c y ycstep k step k k   k k describes the horizontal cylinder displacement. The 

first three (translational) components of the 5D filter function read: 
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The last two (rotational) components of the 5D filter function are: 
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After having found the 5D spatial filter function H(kx,ky), we can express the relation between 

the 5D state of the nanorod and the corresponding tracking signal as an extension to Eq. (3): 

       

0   , , ,  thr
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which is e.g. for displacements in direction bx: 
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6. Tracking results 

The five dimensional configuration space contains many different combinations of cylinder 

positions and tilts as well as corresponding interference patterns, which could be analysed. 

However, to illustrate that the classical Fourier relation of shift / tilt in the FP results in a 

modulation / shift in the BFP holds, only some typical cylinder states are shown here. 

 

Fig. 10. Tracking signals Si(b) for a nanorod with different state vectors b. a) Lateral signals 

Sx(bx) for two different lateral shifts by and tilts bθ . b) Lateral signals Sx(bx) for two different 

axial shifts bz and tilts bθ. c) Axial signals Sz(bz) for two different lateral shifts bx and tilts bθ 

.The linear detection range is marked with a box. 

For a cylindrical nanorod optically trapped in a highly focused beam typical 

displacements are not larger than the extent of the focus and polar tilt angles are smaller than 



bθ = 30° due to restoring forces or torques that increase linearly with the displacement bt or 

tilt angle bθ respectively. The limits in bt and br correspond roughly to the range of 

displacements where the linear relation of signals Sj S0j + gjjbj can be assumed, as it is also 

known from the BFP tracking of spheres. Figure 10 displays the typical sinus-like shaped 

signals for rod displacements. Although the slopes vary slightly, the linear dependency for 

rod displacements smaller than 0.2 µm can be seen. 

6.1 The iso-signal grid representation 

In the following, the results from numerical simulations are presented, which have been 

computed on a grid with translations bx = 0.2…0.2, by = 0.2…0.2, bz = 0.2…0.6, in µm, 

with increment 0.1µm and tilt angles bθ = 0…30°, with increment 10°, b = 0…30°, with 

increment 15°, which yields 5 x 5 x 9 x 4 x 7 = 6300 different states of a cylinder. Two 

dimensional contour plots Si(bi,bj) and Sj(bi,bj) (i,j = x,y,z,θ,) are overlaid to illustrate that 

most of the signals are approximately linear and pairwise orthogonal to each other, such that 

Si(bi,bj) = giibi and Sj(bi,bj) = gjjbj. Linearity is demonstrated by an equidistant spacing of the 

grid lines, orthogonality is shown by an orthogonal intersection of vertical and horizontal 

lines of equal signals (iso-lines), which are plotted in different colors for i and j in Fig. 11. 

Here, the simplest case is shown, for a non-tilted cylinder shifted over a range of 0.4µm × 

0.8µm (Fig. 11(a)) and a centered cylinder, which is rotated over a range of 90° × 30° (Fig. 

11(b)). 

 

Fig. 11. Position and orientation signals of a cylinder in a focused laser beam. An assumed 

probability density of states is underlayed in the background in gray scale. a) Iso-lines Sx(bx,by) 

and Sz(bx,by) of a vertical cylinder centered in y-direction. b) Iso-lines S(b, bθ) and Sθ(b, bθ) 

of a tilted cylinder in the center of the focus. The smallest polar angle is bθ = 10°, since 

azimuth angles b are not defined for bθ = 0. 

The gray shaded areas in the background of the contour plots indicate the probability 

densities p(bi,bj) to find the nanorod in the corresponding states (positions or orientations) 

assuming a harmonic potential W(bi,bj) ½κibi
2
 + ½κjbj

2
 or a linear restoring force Fj(bi) = -

/bj W(bi), respectively. The probability densities p(bi,bj) are defined according to 

Boltzmann statistics as 
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(42) 

Where p0ij normalizes the probability distribution to 1. σj = kBT/κj is the standard deviation of 

the Gaussian distribution in direction bj (j = x,y,z,θ) and results from the equipartition 

theorem (with kBT as the thermal energy). The coupling of translation and rotation is not 

considered. The probability distributions of the coordinates is assumed to be mutually 

independent such that p(bi,bj) = p(bi)p(bj). The probability distribution for the orientation 



azimuth angle b is p(b) = p0 = 1/(2π) since no force or torque restores the nanorod along b 

if polarization effects are disregarded. The overlays of the signals Sx/z(bθ,bx/z) and Sθ(bθ,bx/z) in 

Fig. 12 as well as the signals Sx/z(b,bx/z) and S(b,bx/z) in Fig. 13 reveal that only weak signal 

coupling occurs according to our computer simulations. However, for axial displacements bz 

= 0.2µm the signal iso-lines Sx(bθ/,bx) in Fig. 12(b) and Fig. 13(b) are rather oblique. 

 

Fig. 12. Linearity and orthogonality of position and orientation signals Sx/z(bθ,bx/z) and 

Sθ(bθ,bx/z) of a shifted and tilted cylinder in a focused laser beam. a), b) Iso-signal lines (in a.u.) 
with and without axial cylinder shift. c),d) Iso-signal lines (in a.u.) with and without lateral 

shift. 

 

Fig. 13. Linearity and orthogonality of position and orientation signals Sx/z(b,bx/z) and 

S(b,bx/z) of a shifted and tilted cylinder in a focused laser beam. a), b) Iso-signal lines (in a.u.) 

with and without axial shift. c),d) Iso-signal lines (in a.u.) with and without lateral shift. 

The signals for axial displacements and a polar angle tilt do couple as shown in Fig. 14, 

where both iso-signal lines are tilted by roughly the polar tilt angle for the cylinder. In this 

case the sensitivity matrix of Eq. (35) is not diagonal and the signals for a change in bi can be 

expressed as 

      ,i i j ii i i ij j j ii i ij jS b b g b b g b b g b g b     (43) 



For increasing changes in bi the sensitivities gii(bi) become space variant. In general all states 

of the cylinder couple with each other depending on the strength of bi such that 

  0i ii i ij j i

i j

S g b g b S


  b . 

The coupling between tilt and axial shift can be understood by inspecting Figs. 8(b) and 

8(f), where the modulations of interference intensities are not independent in x,y and z. 

 

Fig. 14. Coupling of linear position and orientation signals Sx(bx,bz) and Sz(bx,bz) of a shifted 

and tilted cylinder in a focused laser beam. An assumed Gaussian probability density of states 

as a result of linear restoring forces is underlayed in the background in gray scale. 

7. Calibration of the tracking system and error estimate 

The standard technique to obtain the trap stiffnesses κjj and the detector sensitivities gjj is to 

use the Langevin calibration method [27] for a particle diffusing in a harmonic potential. 

Here, the κjj can be measured via an autocorrelation function AC[bj(t)], which decays 

exponentially in a harmonic potential W(bi) with autocorrelation time τjj = γ/κjj. One can solve 

for κjj by using the translational drag coefficients 4     / ( ( / ) )L log L D      and 

2     / ( ( / ) )L log L D     or, respectively, the rotational drag coefficient 
3

rot    / (3 ( / ) 3 )rot L log L D     which is known from the dimensions D and L of the cylinder. 

Here η is the fluid’s viscosity and δ are factors [34]. 

The detector sensitivities gjj = σsj/σj can be obtained from the standard deviations of the 

position or angle probability density, which is σj = kBT/κj according to the equipartition 

theorem, and the width σsj of the measured signal histograms. The histogram is generated 

from the trajectories Sj(t) = Sj(bj(t)), which are measured for a couple of seconds. Since the gjj 

are never constant across the diffusion volume, the widths σsj and the sensitivities gjj represent 

mean values. 

Therefore the reconstructed nanorod state
rec

jb is obtained
rec

jb Sj σj/σsj. This results in a 

relative tracking error Δbj, which is 

 ( / )j j j sj jb S b     (44) 

In our computer simulation we assumed realistic values for σj = kBT/κj as shown by the 

background gray colors in Fig. (14) From this we obtained the corresponding widths σsj and 

thereby gjj = σsj/σj. Since we know the real input value bj in the simulation, the error Δbj 


rec

jb -bj can be estimated. This is shown for some typical states of a nanorod in Fig. 15. 



 

Fig. 15. Tracking errors for disaplcements and tilts of a cylinder (L = 0.8, D = 1µm, ns = 1.57) 

a) Absolute tracking error for lateral displacements bx for different state vectors b. b) Absolute 

tracking error for tilt angles bθfor different state vectors b. Results were calculated with the 
simulation software LightWave(R). 

8. Discussion and conclusion 

We have presented a theoretical concept of how to recover the 5-dimensional state b = (bt,br) 

of a cylindrical nanorod (3D position bt and two angles br) from the interference pattern of 

unscattered light and light scattered at the cylinder. In particular, we present for the first time 

that the orientation tracking of a nanorod in a focused laser beam is also possible with the 

established concept of BFP-interferometry. Several difficulties had to be overcome, which 

might be one of the reasons why no such tracking concept has been presented yet. 

Although rigorous scattering computations for a tilted cylinder in a highly focused laser 

beam have been published [20, 31], corresponding to a solution of the forward problem, the 

back ward problem, the recovery of both the 3-D position and the 2-D orientation could not 

be solved. More precisely, the required direct relation between a nanorod displacement or tilt 

in the FP and the corresponding change of the interference pattern in the BFP has not been 

revealed. To uncover this relation, we have developed an analytical model based on the 

Rayleigh-Gans scattering theory. Since the interference patterns have to be evaluated in the 

BFP of the detection lens, the electric fields are derived in k-space or in the angular spectrum 

representation, respectively. The analytical representation of the form factor for a tilted 

cylinder was simplified by the approximation that the cylinder of finite length is infinitely 

thin. In addition, we used a local field approximation, i.e. an incident plane wave to calculate 

the scattered field spectrum, since the lateral phase of the incident field does not change much 

for typical displacement of an optically trapped nanorod. This operation results in a shift of 

the form factor by the incident k-vector. The local change of the phase and amplitude of the 

incident focused field along z was computed by Gaussian beam optics including the Gouy-

phase shift. 

The interference pattern in the BFP was then obtained by the spectrum of a highly focused 

incident beam and by the approximated spectrum of the scattered field. From the analytical 

formula for the interference intensity and the corresponding 1D and 2D plots, it turned out 

that a nanorod displacement results in the modulation of the BFP interference intensity, 

whereas a tilt of the nanorod results in a shift of the BFP intensity. The results of our model 

with above mentioned approximations were confirmed by a rigorous numerical approach for a 

dielectric cylinder with L = 0.8µm = λ/n and D = 0.1µm, which were obtained by the in-house 

developed simulation software LightWave
(R)

. 

Over a reasonably wide range of displacements bt and/or tilts br the 5 resulting signals 

S(b) S0 + ĝ·b are roughly linear with b and roughly orthogonal to each other. Only for larger 

nanorod displacements and angles, the signals become more nonlinear and begin to couple. 

This is especially pronounced for a tilted cylinder displaced in the axial z-direction. 



However, there are a number of means of how to reduce the inter-signal coupling and to 

increase the linear tracking range. Similar to the approaches that have been applied 

successfully for the tracking of spheres [30, 35], a spatial filter (function) in the BFP of the 

detection lens might help to improve the 5D tracking of small cylinders in the focal region of 

a highly focused beam. 

Nanorods can align horizontally, i.e. parallel to the strongest component of the electric 

field inside the focus due to a polarization induced torque [36, 37]. By inspecting Fig. 2 

similar scattered fields and interference patterns can be expected for a horizontally tilted and 

shifted cylinder, provided that the cylinder is shorter than the focal diameter, i.e. L < λ/nm. 

However, further investigations are necessary to test whether in this case the resulting 

tracking signals are unique, linear and orthogonal. 

The experimental realization of our theoretical concept remains open and is challenging, if 

a fast tracking rate of about 100 kHz is the goal. It appears to be difficult to record the 

intensity pattern by simply two QPDs, delivering eight signals in total. A straightforward 

approach seems to be the usage of fast cameras with a small number of pixels, which are on 

the market, also for the popular 1064nm trapping wavelength requiring InGaAs as sensor 

material. It remains to be shown, whether the here presented tracking concept can be verified 

under experimental conditions. 

Nevertheless, the fast 5D tracking of cylindrical nanorods will enable a manifold of 

applications reaching from non-equilibrium local probe measurements to surface scanning 

with optically trapped, needle-like probes similar to AFM imaging. Furthermore, if nanorods 

are used as building blocks for nano-scaled systems, the observation of their thermal state 

fluctuations is indispensable for a controlled assembly. 


