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Abstract: Optical traps have shown to be a flexible and powerful tool for 
3D manipulations on the microscale. However, when it comes to sensitive 
measurements of particle displacements and forces thorough calibration 
procedures are required, which can be already demanding for trapped 
spheres. For asymmetric structures, with more complicated shapes, such as 
helical bacteria, novel calibration schemes need to be established. The 
paper describes different methods of how to extract various calibration 
parameters of a tiny helical bacterium, which is trapped and tracked in 
shape by scanning line optical tweezers. Tiny phase differences of the light 
scattered at each slope of the bacterium are measured by back focal plane 
interferometry, providing precise and high bandwidth information about 
fast deformations of the bacterium. A simplified theoretical model to 
estimate the optical forces on a chain like structure is presented. The 
methods presented here should be of interest to people that investigate 
optical trapping and tracking of asymmetric particles. 

©2014 Optical Society of America 
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1. Introduction 

Taking a picture of a person from the top does not provide much information, since humans, 
like most other mammalians, are lengthy in shape. Therefore, the optical imaging axis is 
usually chosen to be perpendicular to the long axis of a person. On a much smaller scale, 
conventional optical traps usually orient lengthy objects (or several round objects) along the 
optical imaging axis, since the intensity gradient is weakest in this direction [1,2]. This makes 
detailed imaging of more complicated, lengthy structures difficult or even impossible. 

Therefore, alternative optical traps have to be designed to manipulate and investigate 
complex, dynamic and force producing structures, which are relevant to bio- and nano-
technology. Such light distributions, which are characterized by strong radial intensity 
gradients, can be generated either by time-multiplexing a highly focused laser beam (optical 
point trap) [3] or by a static line-focus resulting from phase holograms. Also called line 
optical tweezers, these elongated traps have shown to be useful for orienting bacteria in the 
image plane during fluorescence based investigations of the Z-ring of single E.Coli cells [4], 
investigating static and dynamic [5–8] particle interactions as well as transport processes [9, 
10]. Therefore, the intensity along the trap center line is modulated such that harmonic optical 
potentials [7], linear potential ramps [11] or periodic potentials [12] are created, enabling 
various particle transport modes or force measurements. 

Line traps can be calibrated by standard methods for spherical and cylindrical particles. 
However, the equivalent force calibration for complex shaped structures such as helical 
bacteria [13] is trickier. Only recently, we have shown that 200 nm thin living helical bacteria 
(spiroplasma melliferum), which quickly undergo fast shape deformations, can be trapped and 
oriented by smoothly distributing the optical energy along the bacterium with a time-
multiplexed point trap [14]. The deformations could be measured by interference of 
unscattered trapping light and light scattered specifically at each slope of the bacterium. By 
this interferometric shape tracking, a 3D movie with very high contrast and resolution could 
be recorded at 800 Hz. The measured slope deformation enabled us to estimate the 
deformation energy the bacterium had to bring up against the optical forces, against viscous 
friction of the embedding fluid and against its own internal strains. 

In this paper we show both experimentally and theoretically, how linear restoring forces 
arise in all three directions even for complex shaped structures, enabling precise force 
measurements, which can be spatially resolved along the axis of the bacterium. We further 
show how to calibrate such an objected adapted optical trap and the inherent interferometric 
tracking system. The current study bases on the supplementary information of our recent 
publication [14]. 
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2. Optical setup 

The task of capturing a lively, deforming bacterium purely by optical forces and to distribute 
the optical energy as smoothly as possible along the bacterium is not trivial. In time average, 
the helical bacterium needs to experience linear restoring forces in all three directions, i.e., an 
elongated 3D harmonic optical potential must be created. The requirements for an optical 
trapping and tracking setup that exerts well-controlled optical forces and precisely measures 
shape deformations by using a time-multiplexed laser focus is explained in the following: 
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Fig. 1. Setup scheme for time multiplexed optical trapping and tracking. A 1064 nm laser 
passes an acousto optic deflector (AOD). The different diffraction orders are used for two 
independently steerable optical traps. Interference of light scattered at a trapped object with the 
unscattered light is analyzed by two quadrant photo diodes (QPDs). For further details see 
main text. A Köhler-illumination from the top is used to image the focal plane on a CCD with 
the aid of lens L7. Right inset: Brightfield image of a trapped bacterium with the optical line 
trap indicated by a red ellipse (reproduced from [14]). Scale bar: 1 µm. Left inset: (a) Axial 
signal from QPD2. (b) Different trap positions forming the time shared optical potential. A 
projection of the helical cell is shown in green together with the cell tube diameter d, the 
helical pitch p and the overall cell diameter D + d. (c) Distribution of incident intensity along 
the line trap. (d) Illustration of the coordinate system and vector definitions (reproduced from 
[14]). 

A two axis acousto optic deflector (two AODs – DTSXY-400-1064, AA Opto 
Electronics) is used to mainly modulate the intensity I0 of a 2 W 1064 nm cw laser (Smart 

Laser Systems, Germany) by controlling the transmitted power P(x(t))I0. Instead of an AOD, 
a simple acousto-optic modulator (AOM) can be also used. The non-diffracted 0th orders 
beam (0-0) is used for the intensity modulation and is coupled into a single mode fiber 
(SMF), to be deflected by a two axis galvanometric scan mirror (SM - General Scanning Inc., 
Watertown, MA) enabling a maximum scan frequency of fSM = 1000 Hz. Two laterally 
displaced beams (in bright red) and one non-displaced beam (in dark red) are illustrated in 
Fig. 1. In principle, the first orders (1-1) diffracted beam from the AOD can be used, too, if 
fast scan frequencies are required and slight intensity aberrations from the AOD are 
acceptable. Since the 0th orders and 1st orders diffracted beams are orthogonally polarized, 
they can be easily re-combined by a polarizing beam splitter cube (PBS). However, in our 
study the (1-1) orders beam diffracted by the AOD was only used in section 6, but not for the 
regular experiments. As the beams diffracted by only one AOD (0-1 and 1-0), it was thus 
blocked by a beam block (BB). 
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The non-diffracted beam (0-0) deflected by the SM is then imaged through a 4 f-system 
(L1-L2) onto the back focal plane (BFPTL) of the trapping lens (TL – Olympus 
UPLAPO60X/IR) with numerical aperture NA = 1.2. In this way, the diffraction limited laser 
focus can be displaced by xL =  ± 6 µm at 500 Hz in the focal plane (FP) of the TL resulting 
in a time-multiplexed optical point trap. Trapping parameters can be further adjusted by over- 
or underfilling of BFPTL [15,16] by the lens system L0/L2 and L1/L2, respectively. In general, 
the laser focus is displaced at several 100 Hz along a line (x direction) using the SM in order 
to adapt the trapping potential to the elongated helical cell body (as indicated by the inset of 
Fig. 1, thus creating an intensity modulated line trap [3,7,8,14] (also see section 3). 

The incident laser light as well as the coherently scattered light is collected by another 
high NA objective lens (Zeiss 440067 63x Achroplan NA 0.95), also referred to as detection 
lens (DL). The BFPDL of the DL is imaged by two different lens systems L3/L4 and L3/L5 on 
two InGaAs quadrant photo diodes (G6849, Hamamatsu Photonics), where the interference 
pattern is analyzed for shape tracking of the trapped cell (see section 4). In principle, one 
QPD would be sufficient but the usage of two different effective NAs for lateral and axial 
position detection leads to a better signal quality [17]. 

An additional bright field LED illumination (green) from top is used to image the focal 
plane on a CCD camera (Visitron Systems GmbH, CoolSNAP cf). The trapping light and the 
illumination beam are separated by a dichroic mirror (DC). 

3. Theory: Forces and potentials of a helical structure in a line optical trap 

In this section we address the question from a theoretical point of view, whether a soft 
structure with a complicated shape, such as a helical bacterium, can generate a harmonic 
potential. How can one distinguish between an overall optical force and local optical forces 
acting on the structure? 

The forces of an optical point trap on a spherical dielectric particle (a bead) are well 
understood in the meanwhile and have been described theoretically [18,19]. The theory, based 
on a separation of optical gradient and scattering forces, has also been extended to the 
trapping of single beads in line optical traps, i.e., by scanning a point trap very fast along a 
line [7,8]. In this work, we further extend the line trapping approach to an elongated helical 
bacterium, which is modeled as a chain of connected pearls. 

Force on a small sphere. The force F of a static point trap at position rL (L = laser focus) 
on an small spherical object at center position a can be calculated from the intensity of the 
incident and the scattered field, Ei(rL) and Es(rL,a) according to Eq. (1). 
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The optical force splits into two components: a gradient force Fgrad pulling the object towards 
the focal center in all three directions and a scattering force Fscat (due to radiation pressure) 
pushing the object in axial direction. In consequence, the scattering force leads to a small 
axial offset of the stable trapping position (where Fgrad = Fscat) and counteracts the gradient 
force. The ratio between both forces can be adjusted to a certain amount by over- or under-
filling the BFP of the TL [16]. However, for small particles the scattering force is often 
negligibly small compared to the gradient force. The integral averages all intensity gradients 
inside the volume V of the scatterer [16] described by a shape function s(r), which is s(r) = 
1/V within the scatterer and s(r) = 0 outside. 

The scatterer is assumed to be non-absorbing and has a real polarizability α in a medium 
with a real electric permittivity ε = n

2
. c/n the speed of light in the aqueous medium with 

refractive index n 1.34. 
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Ii(r-rL) is the intensity at position r of the laser focus at position rL = (rx, ry, rz), such that 
the spatially confined intensity gradient is approximated by the derivative of a Gaussian 

function as shown in Eq. (2). The latter has focal widths Δx Δy ½λ/NA, and Δz λ/(n-

ncos(α)) with NA = nsin(α), corresponding to the full width half maximum of a diffraction 
limited focus: 
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In Eq. (1) this intensity is further modulated by the dimensionless Gaussian distribution 

P(rL(t)) = P0exp(-xL
2
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) generated by the AOD in order to get a harmonic trap potential 

along the direction of the line trap with length LT = 12 µm, too. (see Fig. 1(c)). xL(t) is the 
position of the laser in scan direction and σT = 4 µm represents the Gaussian width of the 

focus intensity distribution in time average. I0P0 and σT determine the depth of the potential. 
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Fig. 2. Pearl model and principal of force generation. (a) The helical bacterium with center of 
mass position b is modeled as a chain of pearls at position a = b + c(x), where c(x) describes 
the slopes of the helix. The position of the laser focus is rL. (b)-(d) Illustration of the three 
steps to calculate the total force of the laterally sweeping focus on the whole bacterium. 

Force on a thin helical structure. More precisely, we model the cell body as a chain of 
pearls or beads located at positions a(x) = b + c(x), where b is the center of mass position of 
the bacterium and Eq. (3) describes the helical slopes of the bacterium as illustrated by the 
inset of Fig. 1 and Fig. 2(a). 
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p = 1/kH defines the periodicity of the helical structure of radius RH. The diameter of such a 

pearl must be smaller than the narrowest extent of the laser focus, Δx Δy λ/(2 n), such that 
the Born approximation is valid. Therefore, the diameter of the cell tube d = 190 nm is a 
reasonable size of a pearl and N = 2Δx /d = 4-5 pearls fit within a laser focus. However, for 
the ease of calculation and since a pearl has a low refractive index and a small d compared to 
the wavelength λ = 1064 nm, we consider the cell body to be a delta line: s(r-a) = δ(r-a(x)). 
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The gradient force Fprl generated by the laser focus at position rL = (xL, 0, 0) on a single pearl 
is described by Eq. (4). In our model, we assume the individual pearls to be connected with 
each other through springs. Since we do not observe in the experiments that the trapped 
bacterium is squeezed together, we assume the springs to be stiff relative to the stiffness of 
the optical forces. Thus, the total force Fprls of a static laser focus on the illuminated part of 
the bacterium is obtained by integrating Eq. (4) over the lateral extent of the laser focus 2Δx, 
leading to the summation of forces of N pearls in a center distance d to each other: 
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For a stiff connection of pearls, this expression describes the average center-of-mass force of 
a rod with length Nd within the laser focus. Optical torques are not considered here. 
Furthermore, the torsional friction of the long helical structure is too large to affect the 
movement of the rod during the scan period of the laser focus, which is Ts = 1/f at a typical 
frequency f = 400 Hz. One- and two-dimensional force profiles Fprls(rL) on the helical 
bacterium for various positions rL of a laser focus are shown in Fig. 3 as a result of the 
numerical evaluation of Eq. (5). 
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Fig. 3. Calculated force profiles Fprls(rL) on a helical structure. The laser focus is scanned along 
the position rL and is modulated in intensity over the width σT = 4 µm. The helical structure is 
centered at b = 0. (a), (b) Force profiles of prls

xF  in x-y and x-z direction. Force amplitudes are 
for Figs. (a) and (b) ± 0.9 a.u. (arbitrary units). (c) Line scans as indicated in (a). (d), (e) Force 
profiles of prls

yF  in the x-y and x-z plane. Force amplitudes are for Fig. (d) 1.3/1.3 a.u. and 
Fig. (e) 0.4/0.4 a.u.. (f) Line scans as indicated in (d). (g), (h) Force profiles of prls

zF in the x-y 
and y-z plane. Force amplitudes are for Fig. (g) 0.015/0.015 a.u. and Fig. (h) 0.36/0.36 a.u. 
(i) Line scans as indicated in (g). Color scales range from negative (blue to positive (red) 
values. 

As explained at the beginning, an object-adapted optical trap distributes the optical energy 
smoothly across the extent of the object. Therefore, the laser focus is laterally swept across 
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the object. This leads to a time averaged optical force Fopt(b) = Fprls(xL(t), b) on the total 
bacterium, which we expect to be linear restoring for displacements b of the bacterium. 

Hence, Eq. (5) has to be integrated over all focus positions 0  xL = vLt  LT = vLTs/2. 
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κ b

 (6) 

The diagonal matrix 
effκ  describes the effective (time averaged) stiffness κxe, κye and κze, of 

the object adapted optical trap. The numerical solution of Eq. (6) is plotted in Fig. 4 for all 
three spatial directions and different center positions b of the bacterium. In the experiments, 
the center-of-mass (COM) displacements b can be reached by the bacterium either actively or 
by diffusion. 
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Fig. 4. Calculated force profiles (F)opt(b). (a)–(c) Simulated force profiles for the center of 
mass position b of the bacterium inside a line trap for all three directions. (d)–(f) Line scans as 
indicated in Figs. (a)–(c). The green lines illustrate the linear force dependence for small 
displacements from the trap center. Numbers on the abscissae are in µm. (Reproduced from 
supplementary information of [14]) 

At this point it is important to inspect the line profiles in Figs. 4(d)–4(f), where it can be 
clearly seen that the optical force is linear for small displacements from the center of the line 
trap, i.e., for small positions b relative to the center of the trap. Therefore, the approximation 

of a linear restoring force -κibi (i = x,y,z) according to the second line in Eq. (6) is valid. 
To theoretically estimate the force constants, we use a first order approximation of Eq. (4) 

which results in trap stiffness κprl = (κx,prl, κy,prl, κz,prl) of a single pearl: κprl = nmαI0/c (1/Δx
2
, 

1/Δy
2
, 1/Δz

2
) = (1.13, 1.13, 0.17)pN/µm. Here, we used the Claussius-Mossotti relation α = 

3V(m
2
-1)/(m

2
 + 1), m = ns/nm, with ns 1.4 which is a reasonable value for the outer part of 

many cells, the volume V of a pearl with diameter dt = 0.2 µm and I0 = P0/πΔx
2
 with P0 = 180 

mW. Since the force Fprls on all pearls inside the focus is the sum of N ~4 pearls with force of 

Fprl, the forces constant κprls of Fprls also increases by the factor N: κprls = 4κprl. The effective 
force constants κeff of the line trap are reduced by ΔA = πΔx

2
 / 2ΔxLT = 1/15 since the laser 

power P0 is distributed over a larger area 2ΔxLT instead of πΔx
2
. Additionally, the stiffness in 

scan direction is given by the modulation width σT 4µm > Δx. This results in a secondary 
decrease by a factor Δx/σT = 0.18 in scan direction. Taken together, we theoretically estimate 
the effective force constants κeff = 4/15 (0.18κx,prl, κy,prl, κz,prl) = (0.041, 0.300, 0.045) pN/µm. 
As shown in section 5, this agrees reasonably with the experimentally obtained values: κeff,exp 
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= (0.016, 0.390, 0.038) pN/µm. However, the amplitudes of the simulated force profiles (Fig. 
3 and Fig. 4) are given in a.u. (arbitrary units) since this is only an estimation. 

In addition to the force profiles, the effective trapping potential Veff(b) are calculated 
numerically as shown in Fig. 5 for different situations. We applied parabolic fit functions to 
the line profiles in Figs. 5(d)–5(f) in order to show that the potential is harmonic for small 
displacements in all three directions as indicated by Eq. (7). Again, the Gaussian intensity 
modulation P(t) determines the harmonic potential along the scan direction x. 
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Fig. 5. Calculated optical potentials Vopt(b). (a)–(c) Simulated potential profiles for the center 
of mass position b of the bacterium inside a line trap for all three directions. (d)–(f) Line scans 
(solid) as indicated in figures (a)-(c) and parabolic fits (dashed). Numbers on the abscissae are 
in µm. (Reproduced from supplementary information of [14]) 

4. Interferometric shape tracking of an asymmetric structure 

The interferometric shape tracking technique allows acquiring 3-D images of the bacterium at 
a rate up to 1000 Hz (depending on the scan rate of the laser focus). The resulting images 
have a much higher contrast and resolution compared to other imaging methods applicable to 
the helical bacterium. This section is meant to summarize the main ideas and to provide the 
necessary background for section 5. 

The technique is an extension to the successful back focal plane tracking used for beads. 
The method exploits the position dependent interference pattern of the field Es scattered at the 
trapped cell body element, i.e., a few pearls, with the unscattered light Ei. The phase φs(c) of 
the scattered light strongly depends on the position c(t, xL) of the cell body element relative to 
the position xL of the optical trap, i.e., the center of the focus. Therefore, any change of the 
phase difference between both fields related to a position change of the scatterer results in a 
change of the interference pattern. This change can be measured very sensitively by a QPD, 
therewith tracking the position of the scatterer [14]. 

The interference intensity 0

2
( , ) ( ) ( , )i sI c k c E k E k c  in the back focal plane of the 

detection lens (Fourier space) with coordinates k = (kx, ky) is integrated over the area of each 
quadrant An of the QPD (n = 1, …, 4). The raw signal of the n-th quadrant is given by Eq. (8): 
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P(rL(t)) is the dimensionless Gaussian intensity modulation also generating a harmonic 
potential in scan direction. However, for tracking of the bacterial shapes P(t) can be 
approximated to be constant over the extent of the bacterium, since the cell is much shorter 

(LH = 3-5 µm) than the whole line trap (LT = 10-12 µm) and σT LT/2, i.e., P(LH/2) 0.9 (also 
see Fig. 1 inset). 

The measured raw signal is composed of a signal offset Soff,n(t), which is recorded without 
scatterer and can be easily subtracted from the raw signal. The remaining term represents the 
area integral over the interference term, which can be simplified as shown in Eq. (9): 
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 (9) 

The term A = *2 ( )i sE E c  const. is approximately constant for small displacements cy < 
½Δy and cz < ½Δz. The phase difference φs(c) - φi = (φi + π/2 + s) - φi = s + π/2 contains 
the π/2 phase delay of the Rayleigh-scattered field relative to the incident. Α lateral 
displacement in the focal plane leads to a tilt of the scattered light in the back focal plane of 
the detection lens (  ( ) (k )expx xxxx c ik c E E ) and therewith results in a linear 
dependence of phase and displacement s(cx, cy) = kxcx + kycy for small |c|. The linear 
dependence between the phase s(cz) -akzcz and the displacement cz is also obtained in in 
axial direction, when the Gouy phase anomaly of the focused trapping beam φi(z) = kzz – 
tan

1
(k0/n NA

2
 z) is considered [14]. 

Using s(c) = kxcx + kycy - akzcz and inserting the term of Eq. (3), the shape tracking signal 
for a laser at position xL can be well approximated to the following expression 

,
ˆ ˆ( ) ( ) ( )raw

n off nS S S c c c : 
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 (10) 

The vector operator H(k) generates the difference between the signals of the vertical and 
horizontal two quadrants for the lateral position signals and takes the sum of all four 
quadrants for the axial position signal [14]. 

The linear approximation in the second line of Eq. (10) holds for small displacements 
from the trap center. The constants gi (i = x, y, z) are the detector sensitivities, which have to 
be determined through a calibration procedure explained in the next paragraph. In contrast to 
conventional BFP-tracking of beads, we have to further consider the correction factors qy > 1 
and qz > 1. These factors are due to the helical slope of the cell and are explained in sections 5 
and 6, together with κi and gi. 
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Fig. 6. Measured QPD signals from the helical bacterium. (a) y- and z- signals (according to 
Eq. (10)) over time (bottom axis) and corresponding position inside the line trap (top axis). (b) 
Kymographs of y-signal. The red lines show the edges of the cell. (c) Kymographs of z-signal. 
(d) Slightly smoothed slope amplitudes ay(xL), az(xL) obtained from a) after calibration. The 
rectangular offset function of the axial (z) signal has been removed. 

The signals recorded by the shape tracking method are shown for a single focus scan in 
Fig. 6(a)). The signal scale is in Volt for the raw signals according to Eq. (10). A calibrated 
version of the same data is shown in Fig. 6(d) (see next section for calibration). Figures 6(b) 
and 6(c) show Kymographs (i.e., the temporal evolution of single line scans) of Sy and Sz of a 
dead bacterium, illustrating thermal fluctuations of the cell inside the trap. It should be noted 
that the shape of a dead cell remains the same as for a living specimen (within the time 
window we analyzed the cells). Cells typically die after being trapped for 30-60 s due to the 
formation of reactive oxygen species (ROS) caused by the high laser power of ~180 mW in 
the focal plane. While this can be used to calibrate traps, oxygen scavenging enzymes such as 
catalase and glucose oxidase can be also used to scavenge the ROS molecules and to keep 
cells alive for more than 10 minutes. 

Data of living and actively self-propelling cells as well as 3D movie reconstructions can 
be found in [14]. 

5. Detector and trap calibration for an asymmetric structure 

An elegant way to calibrate an optical trap, i.e., to find the trap and detector sensitivities κj 
and gj (j = x,y,z), is the so called Langevin method [19,20]. In general, by solving the equation 
of motion for a highly over damped particle in an external harmonic potential, an exponential 
decay of the autocorrelation (AC) function of the particle trajectory is found. The 
autocorrelation time is given by τ = γ /κ. If the friction coefficient γ is known, e.g. γ = 6 πRη 
for a spherical bead with radius R in a fluid with viscosity η, the trap sensitivity κ can be 
calculated by fitting the exponential slope of the AC. Further, the general definition of the 
detector sensitivity gj = Sj / cj is the proportionality between the signal from the detector (in 
Volt) and the true bead position (in meter). An equivalent definition is the relation between 

signal fluctuation width σj
’
 = ΔSj and particle fluctuation width σj = Δbj, i.e., gj = σj

’
/ σj. In 

this representation, the equipartition theorem ½ κj σj
2
 = ½ kBT, which links the particle 

fluctuations with the thermal energy, can be used to determine gj. The signal fluctuation width 
can be found by fitting a Gaussian function to the signal histogram. 

However, the Langevin calibration method relies on the knowledge of the friction 
coefficient γ, which is unknown for a helically formed tube with a variable diameter, pitch 
and overall length. Some publications use the coefficients for a straight cylinder instead, 
which does not lead to correct results in our case. Therefore we go a different way and 
perform a detector calibration scan over a freely diffusing helical bacterium to determine gy 
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and therewith κy and γy. This approach is similar to scanning a bead through the laser focus 
which is often used to calibrate optical traps. 
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Fig. 7. Detector calibration at a freely diffusing cell. (a) Calibration schematic. The trap 
direction is suddenly changed by 90°, therefore performing a ‘calibration scan’ perpendicular 
to the long axis of the cell. (b) QPD signal Sy of the calibration scan showing the unique (blue 
fit) and linear (green line) detection region with gradient gy. (c) Temporal behavior of gy for 
five different calibration scans (indicated by different colors). 

The calibration scan is illustrated in Fig. 7(a). Initially, the cell is stably held by the line 
trap along x. The scan direction of the laser focus is suddenly changed by 90°, thus scanning 
in y direction, i.e., perpendicular to the long axis of the cell. The corresponding signal is 
shown in Fig. 7(b) for a single focus scan. Since the position of the laser is known at every 
time, the signal amplitude Sy(y) can be mapped to a certain displacement y of the laser from 

the center of the cell body (Sy(by) = 0V) and thus gy = /y Sy(0) can be determined as 
indicated by the slope of the green line. 

Since the cell is no longer stably trapped during the calibration scan, one needs to check 
the stability and reliability of this method because now the cell can rotate or move out of its 
initial position. Thus we performed the calibration scan over some hundreds of milliseconds 
with a scan rate of 400 Hz and analyzed the temporal changes of gy. The result is shown in 
Fig. 7(c) for five different scans. The detector sensitivity stays remarkably constant over the 
first 50 ms. Secondly, different calibration scans (at different cell positions) result in the same 
value for gy within a deviation of ~10%. Therefore, the value for gy can be further improved 
by taking the mean value of the first 50 ms ( = 40 scans) of a calibration scan. 

As already mentioned, gy with correction factor qy > 1can now be used together with the 
equipartition theorem to determine κy and γy 
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To calibrate in axial direction, we use the symmetry property of the cell along its long axis, 
which means that the cell has equal friction coefficients in y- and z-direction 

 'y z

y z z z zz

z B

g q
k T

 
   s


     (12) 

The calibration in scan direction is much easier since the position of the laser, and therefore 
the position of the cell in scan direction, is known 
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Equations (11)–(13) show how the calibration constants can be determined ideally from the 
position signals. However, the method relies on center of mass positions (CMP) representing 
the whole object in order to calculate position histograms and autocorrelations. Regarding the 
typical case of a bead in a point trap, the detector signals Si (i = x, y, z) directly represent the 
CMP position. For the line-trapped helix, they have to be extracted from the signals Si in 
order to determine the parameters σj and τj, first. In scan direction, this is done by a slightly 
extended version of the build-in edge detection algorithm of our analysis software 
(Wavemetrics Igor Pro). The algorithm detects the beginning (left edge = LE) and end (right 
edge = RE) of the cell for every scan in a kymograph shown in Figs. 6(b) and 6(c) (red lines 
show the borders/edges of the cell). The edge detection result is also shown in Fig. 8(a) with a 
corresponding histogram of the left edge (as representative) in Fig. 8(d) and autocorrelation in 
Fig. 8(g). 
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Fig. 8. Trap calibration for a helical structure. (a) Position trajectory of the cell’s left and right 
edge (LE and RE) (b) and (c) Trajectory of the cell’s center of mass position (CMP) in y- and 
z- direction. (d) – (f) Histograms (Hist) of corresponding position data with error bars 
indicating the standard deviation1/ N . Gaussian fits in blue. (g) – (i) Autocorrelations (AC) 
of corresponding position data and fit of exponential decay (y axis log scaled). 

In y- and z-direction, the CMP is equal to the arithmetic mean of Sy and Sz between the left 
and right edge of the cell as shown in Figs. 8(b) and 8(c). Histograms of the corresponding 
CMP values are shown in Figs. 8(e) and 8(f) and ACs in Figs. 8(h) and 8(i). As one can 
already see from the fits to the ACs, the trapping stiffness κ is the strongest in y direction and 
the weakest in scan direction since the autocorrelation times are τy < τz < τx. 

The calibrated slopes of a representative scan of the helical cell are already shown in Fig. 
6(d). Here, the CMP value has been subtracted as an offset to show the similar amplitudes in 
y and z direction. One can also clearly see the π/2 phase shift between both directions 
resulting from the dependence of c(x) on cos and sin functions. The helical pitch p is found 
for various measurements to be in the range of 900 µm to 1000 µm, which fits well to detailed 
analyses made by Trachtenberg & Gilad [13] and justifies the assumption of stiff inter-
connecting springs in section 3. 
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Results of the calibration are given below for one representative cell/scan out of several - 
at a laser power I0 180 mW. Indeed, we did scan a couple of cells all leading to comparable 
results. gy/qy = (179 ± 2)kV∙m

-1
, gz/qz = (81 ± 2)kV∙m

-1
, κx = (0.016 ± 0.001)pN∙µm

-1
, κy = 

(0.39 ± 0.04)pN∙µm
-1

, κz = (0.038 ± 0.003)pN∙µm
-1

, γx = (8.0 ± 0.4)fN∙s∙µm
1

, γy,z = (1.3 ± 
0.1)fN∙s∙µm

1
. 

The estimation of the correction factors qy = 4.0 and qz = 1 / 1.5 is explained in the next 
section. At this point, it should be noted that the experimentally obtained drag coefficients γx 
and γy,z deviate from those of a cylinder with a corresponding length LC = 4 µm and diameter 
DC = 2RH + d = 560 nm: γC,x = 14.2fN∙s∙µm

1
 and γC y,z = 17.9fN∙s∙µm

1
. 

Estimation of the axial tracking range. In BFP-interferometry, the tracking range is 
limited by a unique detection region (UDR, also see Fig. 7). The width of this range depends 
mainly on the NA of the trapping lens (TL) [16], the object size and the refractive index but 
hardly on the detection NA. By moving an object axially through the trapping focus, the 
stable axial trapping position inside the UDR can be estimated. In bead assays, this is done 
after sticking the bead to the coverslip by adding salt to the trapping medium. The coverslip 
can then be moved stepwise through the focus with the help of a piezo and the detection 
signal can be recorded. The resulting slope resembles a sinus function between –π and π, i.e., 
the signal has a clear minimum and a maximum limiting the unique detection region. 
Comparing to the mean position signal of the bead diffusing inside the trap, the trapping 
position relative to the positions of the minimum and maximum detection signal can be 
determined. 

This method was applied to a horizontally trapped bacterium, since we were not able to 
stably attach the cell to the cover slip. We therefore just pushed the cell out of the trap by 
moving the piezo from below the cell towards the trap as illustrated in Figs. 9(a)–9(c). We 
plotted the maximum of every line scan during this experiment vs. the current piezo position 
(Fig. 9(d)) resulting in a trapping position (point B) of ~800 nm below the maximum 
detection signal (point C). Comparing this to measurements with beads for identical optical 
parameters [16], this indicates that the cell is trapped only ~150 nm (or 8% of full UDR) 
above the geometrical center of the focus. Thus, the scattering force (which mainly pushes the 
cell in axial direction) is small relative to the gradient force as we assumed in section 3 to 
calculate the trapping forces and potentials. Instead of taking the maximum per line scan, one 
may take the mean value of every line, which does not change the result. 
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Fig. 9. Sedimentation experiment to estimate the tracking range. (a) The bacterium is trapped 
far away from the cover slip (blue rectangle) in the focal plane (grey rectangle) of the TL. (b) 
The cover slip is moved towards the cell until they touch. (c) The cover slip is moved further 
thus pushing the cell out of the trap. (d) Maximum value per line scan of axial QPD signal Sz at 
every piezo position. 

Similar to the detection scan shown in Fig. 7, the detector sensitivity gz / qz (90 mV / 500 
nm) / 1.5 = 1 20 kV/m (in z-direction) can be determined from the signal gradient when the 
cell is pushed out of the trap as indicated in Fig. 9. This value is a factor 1.5 larger than the 
value shown further above and obtained by our calibration technique, however, the 
parameters of the line-trap (scan frequency f = 200 Hz, trap length L = 10 µm, modulation 
width σT = 5 µm) were different during both experiments. Therefore, we find that both values 
agree quiet well. 
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6. Signal averaging inside a diffraction limited focus 

As pointed out in section 4, the aforementioned calibration procedure results in diameters of 
the helical cell body which are smaller than the true cell diameter. The relation between the 
actual diameter D and the apparent diameter Dy’ is qy = D/Dy’, or qz = D/Dz’, correspondingly. 
The occurrence of the factors qy and qz is purely geometrical and can be explained by our 
pearl model. A quantitative estimation is possible by simulations of the bacterium’s 2D 
interferometric tracking signal. Since the wavelength in the trapping medium λ = λ0/nm = 800 

nm is in the range of the projected length of one helical winding p 900nm, the positions of 
several pearls are averaged at every focal position during a scan. This is illustrated in Fig. 
10(a), where all position signals of the green pearls of the cell body are averaged within the 
laser focus corresponding to the signal of a virtual pearl (shown in blue). Apparently, the 
position Dy’/2 of this blue pearl is smaller than the true position D/2 of the cell body. 

The different q-factors in lateral and axial direction result from the different focus widths 

in both directions, for which we estimate Δz/Δy = ½sinα/(1-cosα) = 2.6 (according to the 
theoretical resolution limit). The averaging effect is therefore less pronounced in the z-
direction requiring a smaller correction factor qz. One can estimate for the ratio of both 

apparent diameters Dy’/Dz’ = qy/qz = Δz/Δy = 2.6, such that qz = qy / 2.6 1.5 
However, there is a second calibration scheme (referred to as ‘method 2’) that can be 

used. It is illustrated in Fig. 10(b), where the cell is stably trapped in a line trap while a 
second trap rapidly scans a meander-like trajectory. This resembles many subsequent 
calibration scans, each slightly displaced in direction of the long axis of the cell. Parameters 
like the minimum signal value of every such calibration scan (as well as the zero crossing 
point or the maximum) should follow the sinusoidal geometry of the cell, thus giving another 
way to estimate the cell diameter D. Figure 10(c) shows simulated 2D interferometric signals 
of such a meander scan over a fixed cell (no thermal motion). The green line indicates the 
first calibration method, i.e., only one scan perpendicular to the cell body resulting in the 
detector sensitivity gy. The red line indicates method 2, where the zero crossing point of every 
scan perpendicular to the cell body of a 3 µm long meander scan is shown. The amplitude of 
this sinusoidal red line resembles the helical amplitude Dy’. 

Experimentally, method 2 is more difficult to realize than method 1 and needs two traps 
which are steerable independently from each other. We achieved this by superposing the 
zeroth orders (steered by Galvanometric mirrors for the meander scan) and the first orders 
(AOD beam, used for the line trap) of both AODs as described in chapter 1. Both beams are 
polarized perpendicular to each other in order to separate them for an independent tracking. 
The subsequent meander scans are performed on the same area of 3 µm x 10 µm (x, y) and a 
discretization of 100 nm resulting in ~9 scans per helical winding. Figure 10(e) shows three 
individual meander scans separated by the white/black dashed lines (note that only the area of 
subsequent 3 µm x 2.5 µm scans are shown and that the scale of the vertical axis is 
continuously although individual scans span only 3 µm in that direction). 

The position of the signal minimum (minpos) of each scan is shown in Fig. 10(f). Since 
the slope of minpos should resemble the sinusoidal form of the helix, we fit minpos 
accordingly (blue lines). Brownian motion of the cell is suppressed by the line trap, however, 
some scans are distorted too heavy and the fit result is poor. We filtered these events with the 

spatial frequency 0.82 µm
1

  kH = 1/p  1.16µm
1

 of the cell (obtained by a PSD to minpos - 
see Fig. 10(g) which is one of the fit parameters, too. (fit results for p are shown in Fig. 10(h) 
with the filter interval as grey box). After applying the filter, we obtain 9 out of 64 scans 
where the sinusoidal fit matches the spatial frequency of the cell nicely. The corresponding 
cell diameters (twice the amplitude of the fit) are shown in Fig. 10(i) together with the mean 
diameter of the cell D

’
Mean = (95.5 ± 4.5) nm. 

To check if there is any systematic relation between the factors qy, qz, p and D, we used 
the Gaussian beam model [21,22] to simulate the interferometric QPD signals for various cell 
diameters and helical pitches. We plotted the ratio qy for p = 900 nm for both methods as 
shown in Fig. 10(d), to see if the simulations can explain the experimental results. With 
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method 1, we experimentally found an apparent mean diameter D’ = 57 nm for the 
representative scan in section 5. According to the simulations this is equivalent to qy = 4.0 or 
D = 230 nm. For method 2, we found D = 330 nm and qy = 3.3 (for a different cell). The 
distribution for D from [13] results in a mean value for the actual cell diameter DT = 360 nm 
with a standard deviation σDT = 90 nm as indicated by the grey shaded Gaussian distribution 
in Fig. 10(d). Although both values D1 and D2 tend to be smaller than DT, the result for D2 is 
in the range of one standard deviation whereas D1 differs by only 1.4σDT. Thus, the results of 
both methods together with the correction factors derived by simulations are in good 
agreement with values obtained by complementary techniques. 
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Fig. 10. Analysis of tracking signals from focal averaging. (a) Illustration of focal averaging 
due to the extended helical structure with diameter D inside a point focus. (b) Meander scan 
scheme, comparable to multiple subsequent calibrations scans. (c) Simulated meander scan of 
a helical structure with indicated calibration scans by method M1 and M2. (d) Ratio qy = D/Dy’ 
of the actual cell diameter D and the apparent diameter Dy’ retrieved from the simulation for p 
= 900 nm. Dashed lines indicate experimentally obtained q values. The grey shaded area 
represents the Gaussian distribution of D from [13]. (e) Subsequent experimental meander 
scans with a length of 3 µm each. (f) Positions of the signal minima (min pos) of every line 
scan and sinusoidal fits. (g) Power spectral density (PSD) of minpos clearly showing the 

frequency of the meander scan (f = 0.33 µm1) and the helix itself (f = (0.94 ± 1.2) µm1, grey 
box). (h) Results for the frequency fit value and allowed frequency band (grey box, same as in 
h). (i) Diameter Dy’ after filtering for allowed values. Error bars represent the standard 
deviation of a single value. The mean diameter and its standard deviation are indicated (light 
red box). 

7. Summary and conclusions 

Optical trapping and tracking techniques have advanced in complexity and applications: From 
tweezing single spheres or rods to the trapping of several particles in multiple traps, and, in 
recent years, to the trapping and 3D tracking of asymmetric, complex structures [14,23]. 
Here, we showed how 3D optical trapping and 3D interferometric tracking of a helical 
bacterium inside a line optical trap can be used for quantitative measurements on a broad 
temporal and spatial bandwidth. 
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The intent of this paper was to encourage other people from the optical trapping and 
tracking community to extend their setups for manipulation and force sensing of more 
complexly shaped objects. Therefore, we started with a section about the optical setup 
discussing the role of some special components. The most important part is a scan mirror (or 
alternatively, an acousto optic deflector), which generates a line shaped, time averaged optical 
potential. The focus distribution can be well adapted to the global shape of the trapped, 
lengthy object by controlling the position dependent transmission of the trapping laser beam. 
In this way, the object orients horizontally in the focal plane and can be well analyzed by 
imaging, e.g. based on scattered laser light. 

The third section described the theoretical estimate of the local and global optical forces 
on a structure that can be modeled by a chain of pearls. Here we showed by numerical 
solution of the derived force expressions that, if the displacements are not too large, linear 
restoring forces act on each pearl of the chain. By assuming interconnecting springs between 
the pearls which are stiff relative to the trap stiffnesses, we could demonstrate that linear 
optical forces (harmonic potentials) act on the whole stiff object. We theoretically estimated 
the resulting trap stiffnesses of the linear forces using the equations introduced in the theory 
section and obtained a fairly good agreement to the experimentally obtained values. Linear 
restoring forces are the basis for most force sensing experiments using a straightforward trap 
calibration scheme. 

Similarly, we could show that the interferometric signals also depend linearly on the 
positions of each slope of the helical bacterium. In other words, we derived the justification 
that the well-established BFP-interferometric tracking technique is also applicable for more 
complex structures, if a laser focus is scanned across the structure. This fast and precise 
tracking technique in the Fourier plane could not be used for static line-traps, e.g. 
holographical optical traps, if the same beam is used for trapping and tracking. Here, the light 
scattered at the whole object would result in a complicated interference pattern in the BFP 
and changes of the object in position, orientation or shape could only be recovered by using a 
camera in combination with inverse scattering approaches or model-based fitting. 

Based on the expected linear dependency of both the optical force and the position signal 
on the displacement of a single slope of the bacterium, we developed a calibration scheme 
providing the force constants κi and the detector sensitivities gi for all three directions i = 
x,y,z. Our approach is an extension of standard calibration methods used for spherical beads, 
such as the Langevin method to provide κi or bead-focus scans to determine gi. Similarly we 
used position histograms and autocorrelation functions to characterize the dynamics of the 
helical bacterium in a 3D optical potential. In this way, we could determine the perpendicular 
and parallel friction factors of the helical structure which shows - and this is quite interesting - 
significantly reduced viscous drags relative to straight cylinders of a comparable size. 

A time-multiplexed optical trap can be also adapted to other asymmetric objects. For 
lengthy, curved objects, the scanning laser focus can follow an arbitrarily curved line. For 
extended objects, the focus may scan even along an arbitrary height relief rL(t) = (x,y,z(x,y)). 
However, further investigations need to be done to uncover the relationship between the 
shape of an object and the linearity of the restoring forces. 

The last section helps the reader to understand what boundary effects have to be taken into 
account to correct for calibration errors, when the diameter of the laser focus is broader than 
the sub-structures of the trapped object. For a freely diffusing bacterium we could achieve 
fast 2D scan experiments to verify the estimated correction factors. We hope that the ideas 
presented in this study will be inspiring to other optical trappers and trackers. 
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