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Synchronization of elastically coupled processive molecular motors and regulation
of cargo transport
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The collective work of motor proteins plays an important role in cellular transport processes. Since
measuring intermotor coupling and hence a comparison to theoretical predictions is difficult, we introduce
the synchronization as an alternative observable for motor cooperativity. This synchronization can be determined
from the ratio of the mean times of motor resting and stepping. Results from a multistate Markov chain model and
Brownian dynamics simulations, describing the elastically coupled motors, coincide well. Our model can explain
the experimentally observed effect of strongly increased transport velocities and powers by the synchronization
and coupling of myosin V and kinesin I.
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I. INTRODUCTION

In biological systems, energetic processes are typically
“quantized” by the hydrolysis of adenosine triphosphate (ATP)
molecules enabling elementary reactions and conformation
changes of proteins [1,2]. In this way, molecular motors
step discontinuously along cytoskeletal filaments in order to
transport cargos such as vesicles or to translate filaments for
cytoskeletal reorganization [1]. Most motors operate in groups
and thereby enable a more efficient cargo transport [3–7].
However, the observable fingerprints of the quantization, the
stepwise movement of the cargo, remains hidden. Only a
few studies have shown coordinated and coherent stepping
of motors in vitro [8,9] and in vivo [10,11], revealing a
synchronization between the proteins by tracking either the
motors or the cargo. However, in general it is very difficult
to measure the degree of coupling between the motors, which
complicates the comparison of experimental and theoretical
results. Therefore, alternative observables for motor coupling
need to be developed theoretically that are also accessible by
experiments. For the transport velocity of cooperative motors
both an increase [12] and decrease [13] in comparison to
measured individual motor velocities could be observed in
in vitro motility assays. However, theoretical models covering
both effects are still missing. Cargo transport by elastically
coupled motors has been investigated theoretically with special
emphasis on unbinding or binding effects, assuming a sim-
plified velocity-force relationship and state-transition models
for specific motors [14–20]. In other studies, the downhill
diffusion in periodic energy landscapes for more generalized
systems and couplings were calculated to estimate quantities
like transport velocities or efficiencies [21–25]. The problem
with these studies is that the observables for cooperative pro-
cesses typically result from ensemble averages, and the mutual
interferences between the motors are difficult to determine.

Here, we provide an innovative description of motor
stepping and resting, which allows us to determine the
intermotor coupling. In particular, we investigate the degree
of synchronization q for elastically coupled motors stepping
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in a coordinated manner during cargo transport. q helps to
identify coupled processes, which are often covered in a
diffusion governed environment and which are difficult to
extract from measured fluctuation time series. We show that
q is determined by the parameters characterizing the protein’s
specific free potential energy landscape such as step size or stall
force, which differ strongly for different motor proteins. We
assume the motors to be infinitely processive corresponding
to the long run lengths of proteins like myosin V or kinesin I
[26–28]. Using a Markov chain model, the synchronization is
defined by the probability to find the coupled N-motor system
in its ground state. By considering the occupation of higher
energy states, we derive the nonlinear behaviors of transport
powers and velocities as a function of external loading, as
well as a resonantlike behavior of the transport velocity as
a function of coupling strength, which enables insights into
transport regulation processes. For comparison, we performed
Brownian dynamics simulations illustrating the discontinuous
cargo transport and the possibility of an alternative measure
for coupled molecular motors.

II. RATE MODEL FOR MOTOR COUPLING

A. Description of single motor stepping

A step of a processive molecular motor, i.e., one
mechanochemical cycle, includes the unbinding of one head
of the motor, the hydrolysis of ATP, the power stroke of the
other motor head, the diffusive search of the next binding
site by the new leading head, and the rebinding to the
filament [Fig. 1(a)]. In the model presented here, such a
step is described by the diffusion from one local minimum
in a motor-specific potential landscape over a barrier to
another minimum [Fig. 1(b)] [1,2]. The tilt of the potential
originates from ATP hydrolysis. Assuming the frequent case
of tight chemical coupling, where one ATP is consumed per
cycle, the free energy difference between two consecutive
minima �VATP = �GATPηTD is given by the Gibbs free energy
�GATP released per ATP molecule under typical cellular
conditions [29] times a maximal thermodynamic efficiency
ηTD to transform this energy into mechanical work. The
distance between two potential minima is given by the intrinsic
step size sm of the molecular motor. The sensitivity of the
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FIG. 1. (Color online) (a) Sketch of motor cluster pulling on a cargo before (transparent) and after (opaque) one motor performs a step.
(b) Mechanistic model for motor based cargo transport visualizing the parameters �V0, d , sm, and �VATP and the relative motor positions
yi = yint,i + yext,i . (c) Illustration of the ground state (lowest internal strain) and two higher-energy states following a Markov chain. The states
are characterized by the set of normalized deflections yint/sm = [yint,1/sm, yint,2/sm, yint,3/sm] generated by internal forces.

motor to external forces is controlled by the distance parameter
d between the potential minimum and the potential barrier
of height �V0. The parameters sm, �V0, �VATP, and d are
illustrated in Fig. 1(b) and are specific for the respective motor
protein. The detailed shape of this potential is usually unknown
and differs for the various types of processive motor proteins.

B. Multiple motors

In our model, a step of a molecular motor is described
by a diffusion over a potential barrier. According to Kramers’
theory, the rate of such a stochastic process is r = r0e

(−�V/kBT ),
where the prefactor r0 depends on the diffusivity and the
actual shape of the potential [30,31]. A force applied to a
motor will affect the probability of this motor to perform
a step [1,32,33]. Here, each motor is coupled to a common
cargo by the linear force Fc,i(yi) = κmyi(t), where yi denotes
the motor deflection from its relaxed position, i.e., yi = 0
[Fig. 1(b)]. The stiffness κm of the linkage includes multiple
sources of compliance, such as stretching of the motors,
stretching of scaffold proteins linking the motors to the cargo,
and deformation of the cargo itself. Therefore, it can vary
significantly in different cellular systems and in in vitro
approaches [7,34,35]. A motor’s deflection yi = yint,i + yext,i

can result from two forces Fc,i = Fint,i + Fext/N exerted by
the cargo on a motor: an internal force Fint,i(t) = κmyint,i(t)
generated by the other motors connected to the same cargo
and an external force Fext(t) acting on the cargo, which is
distributed over all motors involved. Here, yint,i(t) denotes the
motor deflection by internal forces, without external load. The
deflection yext,i(t) = 1

N
Fext/κm results from the external force.

The force Fc,i leads to a change of the overall potential each
motor is diffusing in. The main effect of this potential change
is the variation of the height of each motor’s potential barrier
�V0 → �Vi = �V0 + (�Vext + �Vint,i), which results from
an external force acting on the cargo �Vext = − 1

N
d Fext and

from the influence of other motors pulling on the cargo
�Vint,i = κ

2 d2 + κyint,id (SM1 in the Supplemental Material
[36]). The effective interaction stiffness is κ(N ) = N−1

N
κm

in the low friction limit and κ = κm for high cargo friction
(SM1 in Ref. [36]). The friction and thereby κ scale with the
cargo size. Considering the effects of the other motors and the
external force on the cargo, the forward stepping rate (indicated
by “+”) for a motor within the cluster can be written as

r+
i = r+

0 e
− �V0+�Vext+�Vint,i

kB T = r+
0 e

− �V0
kB T︸ ︷︷ ︸

r+
m

e
Fextd
NkB T︸ ︷︷ ︸
δ+

ext

e
−κd2

2kB T︸︷︷︸
δ+
κ

e
−κyint,i d

kB T︸ ︷︷ ︸
δ+
y,i

. (1)

This rate is the product of the zero-load stepping rate of
an individual motor r+

m and factors which reflect the effect
of the external forces δ+

ext, the interaction of the ith motor
with the other motors δ+

y,i , and the spatial variation of the
intermotor forces δ+

κ . In the presence of highly counteracting
forces, molecular motors also perform backward steps [37],
which can be treated equivalently to the forward steps using
the substitutions �V0 → �V0 + �VATP, d → sm − d, and
Fext → −Fext. When we employ the individual motor rate
r+
m = vm

sm
, neither the diffusivity of the motor nor the barrier

height �V0 nor the exact shape of the potential need to
be known explicitly. Assuming the same shape factor and
diffusivity for the backward steps as for the forward steps, the

backward stepping rate without load yields r−
m = r+

me
−�VATP

kB T ,
where the free energy difference between two minima of the
motor potential �VATP = smFstall is chosen to fit the maximal
work an individual motor can perform per step.

C. Markov chain description

Assuming a continuous track for the motors, the system
of coupled motors is invariant under translations of integer
multiples of the step size sm. Since the fluctuations of a motor in
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one potential well are small in comparison to a motor step and
on time scales, which are short in comparison to the dwell time
of a motor, we assume that the effect of the other motors is well
described by their temporal average. This mean-field approach
leads to a discrete set of states of the motor cluster which are
characterized by the number N of motors involved and the
internal deflections yint,i i = 1, . . . ,N [Fig. 1(c)] [17,19]. The
ground state of a group of N motors is defined as the state with

the narrowest distribution of deflections σ = 1
N

√∑N
i=1 y2

int,i .
In this context, we can define the individual motor phase ϕi =
yint,i/sm by the motors’ deflection yint,i in the ground state
relative to the step size. If one motor of the cluster performs
a step, the system switches into another state. Equation (1)
allows to calculate the stepping rate for each motor of the
cluster and therefore the transition probabilities

p(k|�) = p+(k|�) + p−(k|�)

= r+
mδ+

extδ
+
κ δ+

y,μ(k,�) + r−
mδ−

extδ
−
κ δ−

y,ν(k,�) (2)

from one state to another. Here, μ(k,�) and ν(k,�) refer to the
motors performing a forward or backward step, which leads
to a transition from state k to state �. The time evolution of a
system of a countable number of statistically switching states
Pk(t) can be described by the master equation

dPk(t)

dt
=

∑
�

[p(�|k)P�(t) − p(k|�)Pk(t)]. (3)

The internal strain between the motors leads to a vanishing
probability for states where the motors are distributed over a
larger region, which corresponds to states with higher internal
energy. Which of the states have a nonvanishing probability
depends on molecular parameters such as the interaction
stiffness κ . The states that need to be considered can be
determined by iteratively taking states with higher internal
strains into account until the probability to reach the states with
the highest internal strains tends to zero. The time averaged
probability distribution Pk is given by the stationary solution
of the master equations

∑
� [p(�|k)P� − p(k|�)Pk] = 0 ∀k,�.

An exemplary calculation for a two-motor system is given in
SM2 [36].

III. NUMERICAL SIMULATIONS

Alternatively to the description based on Kramers rates
and Markov chains, the system of coupled molecular motors
can also be treated by simulating the diffusive behavior of
the motors and the cargo by means of a Brownian dynamics
simulation. As introduced before, we described a step of a
molecular motor by a diffusion over a potential barrier. Such
a diffusion of the motor coordinate x in the motor’s potential
landscape can be described by the Langevin equation

Fth,m (t) = −γmẋ (t) − ∇V0 (x) + Fc (x,xc) , (4)

which takes the form of a Newtonian equation of motion for an
overdamped particle that is subject to a fluctuating force. Here,
γm is the viscous drag of the motor, Fc = κm[x(t) − xc(t)]
is the force of the cargo at position xc on the motor at
position x, and Fth is the thermal force. The amplitude
of this rapidly fluctuating random force is described by
the fluctuation-dissipation theorem 〈Fth,m(t) Fth,m(t + τ )〉 =

2γmkBT δ(τ ), where kB is the Boltzmann constant, T = 310 K
is the temperature, and δ(τ ) is the Dirac delta function [38].
Here, the delta function δ(τ ) is an approximation for the
actual random force which is assumed to have an infinitely
short correlation time corresponding to the collision time
between the molecules. The relative coordinate used in the
Kramers description above can be derived by yi = xi − xc,
where xi = xc indicates that there is no strain between the
motor and the cargo. Thus, xi = xj does not imply that the
motors share a binding site, but that these motors have the
same relative position and thus experience the same force from
the cargo. The cargo position xc projected onto the direction
of the filament the molecular motors are connected to can be
described by the Langevin equation

Fth,c (t) = −γcẋc (t) + Fext −
N∑

i=1

κm [xc (t) − xi (t)], (5)

which includes the cargo’s friction force γcẋc (t), additional
external forces Fext acting on the cargo, and the sum of all
motor forces

∑N
i=1 κm[xc(t) − xi(t)]. Here, N denotes the

number of motors involved. The thermal force on the cargo
Fth,c is assumed to be uncorrelated, i.e., 〈Fth,c(t)Fth,c(t + τ )〉 =
2γckBT δ(τ ). Equations (4) and (5) form a system of coupled
Langevin equations, which are treated numerically using a
Brownian dynamics simulation.

A. Forces appearing in the simulation

In order to perform the numerical simulation, all forces
occurring in Eqs. (4) and (5) have to be calculated explicitly
for every time step. Therefore, the different terms of these
equations are analyzed in the following. Since the actual shape
of the motor potential is unknown and differs for the various
types of motor proteins, the simulation is based on the simplest
possible potential complying with the premise given by the
mentioned motor parameters (sm, �V0, �VATP, and d), which
is a sawtooth potential as illustrated in Fig. 1(b). This leads to
piecewise constant forces

−∇V =
{

−�V0
d

for (xi − smϕi mod sm) ∈ [0,d]
�V0+�VATP

sm−d
for (xi − smϕi mod sm) ∈]d,sm[

,

(6)

where ϕi is the phase of the ith motor. The height of the
potential barrier �V0 was adapted to fit the motor’s rate
r+
m = v

sm
to perform a forward step. It should be noted that

the potential shape affects both the velocity of a single motor
as well as the coupling between the motors to a minor
degree. The thermal force is derived from the fluctuation-
dissipation theorem. The common way to approximate the
delta distribution δ(τ ) in such kinds of equations numerically
is to set it to 1/�t , if τ < �t and otherwise to 0. This yields
the stochastic thermal forces [39]

Fth,m = rn

√
2γmkBT

�t
〈
r2
n

〉 (7)
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for the motors and

Fth,c = rn

√
2γckBT

�t
〈
r2
n

〉 (8)

for the cargo, where 〈r2
n〉 is the variance of the distribution of

the random variable rn, which is produced by a random number
generator. In this context, the external force Fext describes the
additional forces on the cargo. The interaction between a motor
and the cargo is modeled by a Hookean spring with stiffness
κm. The force a motor applies on the cargo and vice versa is
therefore given by κm(xc,n − xi,n). The absolute values of the
friction coefficients γm and γc scale the time step [see Eq. (9)].
In this context, the coupled motor system is described by a
system of coupled Brownian particles. Since only the general
behavior of such a system is of interest, the system can be
scaled without influencing the resulting behavior. Thus, the
friction parameters γm and γc can be scaled without affecting
the simulation results, as long as the autocorrelation time τAC

of the fluctuation of the motor’s position in its potential well
is short in comparison to the rest time τR of a motor.

B. Simulation iteration procedure

The Brownian dynamics simulation iteration procedure can
be derived from Eqs. (4) and (5) by approximation of the
temporal derivative of the position coordinates x and xc by
their difference quotients with a nonvanishing time step �t .
This yields the iteration step

xi,n+1 = xi,n + [−∇V (xi,n) − κm(xi,n − xc,n) − Fth,i]
�t

γm

(9)

for the motor positions and

xc,n+1 = xc,n +
[
Fext −

N∑
i=1

κm(xc,n − xi,n) − Fth,c

]
�t

γc

(10)

for the cargo position. Here, the index n indicates the iteration
and the index i indicates the motor number. The iteration steps
for the motor positions (9) and for the cargo position (10) are
calculated successively.

IV. RESULTS

A. Cargo velocity

Since the velocity of a cargo can be measured easily, it is
the most obvious observable of a motor cluster. The velocity
as a function of the counteracting force is often experimentally
accessible both for individual and coupled motors [32,40–42].
From the presented model, the cargo velocity and thus the
mean motor velocity

v = sm

N

∑
k,�

[p+(k|�) − p−(k|�)]Pk (11)

can be derived from the transition probabilities p+/−(k|�)
between the states weighted by the probability Pk to find the
system in the corresponding state k. sm

N
is the substep size,

i.e., the displacement of the cargo when one motor out of N

performs a step. The Brownian dynamics simulations provide
directly the velocity of the cargo. The resulting velocities
shown in Figs. 3 and 4 are extracted from the analysis of traces
of 10 s length. The error bars correspond to the statistical errors
of the simulated motor steps.

B. Synchronization

The linear processive motors considered in this work move
in a stepwise behavior along their filaments. Apart from the
motors’ velocity and the load they can pull, the stepwise
behavior revealed from high-precision measurements provides
a detailed insight into the structure and function of these motor
proteins. If all motors involved in the transport of a cargo
perform their steps almost at the same points in time, these
motors synchronize their steps.

The better the step synchronization, the longer the time
τR the motor system rests in a preferred state (i.e., the
ground state) relative to the time τD the system needs to
perform an entire step of step size sm (see Fig. 2). Thus, the
synchronization

q =
〈
τR

τD

〉
= 〈τRv〉

sm

(12)

can be defined as the expectation value of the ratio of τR

to τD = sm/v. After an entire step has been performed the
system has usually returned to the ground state. Therefore, the
synchronization can be identified as the probability P0 to find
the system in the ground state. q is a dimensionless parameter
smaller than 1, where a perfect synchronization results in q =
1. The synchronizations resulting from the Brownian dynamics
simulations can be obtained directly from the fraction of time
the system spent in the ground state.

C. Selected molecular parameters

The presented Kramers rate approach as well as the nu-
merical simulations provide observables that can be compared
to results from modern molecular motor experiments [35].
The velocity, the force dependency, and the synchronization
of coupled molecular motors are analyzed exemplarily for

FIG. 2. (Color online) Traces of cargo and motors as a function
of time. Traces resulting from Brownian dynamics simulations of
three myosin V motors with step size sm = 36 nm (lower lines in
gray, left axes) that pull on a cargo (upper lines in blue and red, right
axes) in the absence of an external force on the cargo for low (a) and
high (b) coupling stiffness.
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TABLE I. Literature values of parameters characterizing the motor proteins myosin V and kinesin I.

Observable measure Myosin V Kinesin I References

Step size sm 36 nm 8 nm [26,43–45]
Stall force Fstall 2.3 pN 6.2 pN [32,44–47]
Distance parameter d 4.3 nm 1.3 nma [45,47,48]
Single mol. velocity vm 350 nm/s 800 nm/s [32,44,49]
Vesicle velocity v 450 − 1800 nm/s 3500 − 4000 nm/s [50–52]

aThe value for the distance parameter d of kinesin I is selected to fit the measurements of Ref. [45].

the processive motors myosin V and kinesin I. The specific
literature parameters of these proteins as listed in Table I are
applied for both the Kramers description and the numerical
simulation.

D. Change in transport efficiency due to coupling

In general, the effect of the load on several motors cannot be
described by scaling the effects of a single motor since the ratio
between the different stepping probabilities changes. For low
coupling stiffnesses κ , the velocity-force relation is similar to
the case of an individual motor (SM3 in Ref. [36]) scaled by the
number N of motors involved (in accordance to [53]). Thus,
calculating Eq. (11) reveals that a weakly coupled two-motor
system decreases in cargo velocity v until a counteracting
force Fext of approximately twice the stall force Fstall of an
individual motor is reached (see Table I and Fig. 3). This
additive behavior of Fstall agrees well with experimental studies
[54–57]. However, for stronger motor couplings, the mean step
rate of the motors and thus the velocity decays stronger with
Fext. This effect becomes more obvious when considering the

FIG. 3. (Color online) (a) Mean velocity of a system of two
myosin V motors in phase as a function of the load Fext for different
coupling stiffnesses κ . (b) Power expended by two coupled myosin
V motors as a function of Fext for different κ (in N/m). (c) Same as
(b) for two coupled kinesin I motors.

power � = F v expended by the motors, which is maximal
at a certain load. The maxima in � are shifted for different
κ as shown in Figs. 3(b) and 3(c). Thus, an intermediate
coupling strength is favorable to carry low loads. However,
the intermotor coupling must be reduced in order to carry
higher loads efficiently. Hence, a variation of κ might regulate
intracellular cargo transport in terms of maximum loading,
velocity, and efficiency.

E. Increased transport velocity

As shown in Fig. 4, the velocity v of a motor cluster depends
on the coupling stiffness κ in a complex manner. In the case of
motors in phase, v increases with increasing κ until a maximum
is reached (see SM4 in Ref. [36] for off-phase motors). With
an increasing number N of motors involved, the maximum of

FIG. 4. (Color online) Normalized mean cargo velocities v/vm

of coupled myosin V motors (a) and coupled kinesin I (b) motors in
phase in dependence of the coupling stiffness κ .
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v(κ) becomes more pronounced. This positive interference of
the motors can be explained by the fact that a leading motor
pulls on the other motor(s) and increases the probability for
the trailing motor(s) to perform a step [20,21]. However, very
high coupling stiffnesses impede the initial step of a motor
[term δ+

κ in Eq. (1)] thus reducing the step rate and v(κ). In
the case of motors out of phase, the drop in velocity for high
coupling stiffnesses is attenuated or disappears (see SM4 in
Ref. [36]). However, interaction stiffnesses that are too high
might increase the unbinding probability of the motors, a case
that is not considered in our model. It seems reasonable that the
induced unbinding of motors also leads to a reduction of the
velocity for high coupling stiffnesses—an effect which should
be addressed in future studies.

The dependency of the velocity on the motor coupling
might help to explain the paradox situation that vesicles
inside cells maneuver with velocities that exceed those of the
respective single motors (see Table I). In vitro motility assays
of coupled molecular motors reveal both an increase [12] as
well as a decrease [13] in transport velocity in comparison
to measured individual motor velocities. Interestingly, the
measured stiffness of 0.34 ± 0.08 pN/nm of the linkage of
kinesin I to a bead [58] corresponds approximately to the
peak of the group velocity of kinesins shown in Fig. 4.
Hence, depending on the predominant demands inside the
cell, different coupling strengths seem to be favorable for an
efficient cargo transport.

F. Motor synchronization

In recent experiments, it has been shown that the step
size of organelles pulled by several kinesin or dynein motors
corresponds to the step size of the individual motor proteins
(8 nm) [59]. These findings indicate a strong coupling and
a synchronization of the motor proteins, since otherwise
substeps of fractional step sizes as reported in Refs. [8,60,61]
should dominate. As illustrated in Fig. 2, the trace of a
cargo pulled by a motor cluster is influenced significantly
by the degree of motor synchronization q. The stepping of
synchronized motors leads to clear steps in the trace of the
cargo, where the step size corresponds to the one of the
individual motors. For a low q, substeps, i.e., steps of one
or a few motors involved, gain in relevance, although it can
be difficult to determine the individual substeps. For q > 0.5,
where the time τR in the ground state can be determined and
where states with the same emission parameter of the hidden
Markov model as the ground state, i.e., the cargo position, are
negligible, the synchronization is observable by analysis of the
cargo trace. However, the synchronization can be analyzed in
a wider range by means of methods where individual motor
proteins are labeled [9,42].

Depending on the specific molecular motor parameters,
the synchronization increases nonlinearly with the coupling
strength κ [Fig. 5(a)]. The calculated synchronization cor-
responds well to the simulation results, which are extracted
from the analysis of traces of 10 s length. With increasing
κ , the higher-energy states depopulate and q = 1 − ∑

i=1 Pi

quickly approaches 1.
More interestingly, the velocity at zero load reveals a

maximum at a certain synchronization, which depends on the

FIG. 5. (Color online) (a) Synchronization q = P0 of two cou-
pled myosin V (kinesin I) motors in phase as function of the coupling
stiffness κ . For the case of myosin V, the probabilities P − P4 to find
the system in the states 1–4 (see SM2 [36]) are shown in addition. (b)
Normalized velocity as a function of the synchronization.

type of motor [q = 0.75 for myosin V, q = 0.9 for kinesin I;
see Fig. 5(b)]. The increased cargo velocity results from an
enhanced stepping rate of the trailing motors for large enough
κ or q, respectively. This seems to be more effective than the
reduction of the stepping rate of the leading motors. However,
for a coupling of the motors that is too strong (q → 1),
the massive interaction prevents an initial step of a motor

according to δ+
κ = e

−κd2

2kB T in Eq. (1), which reduces the velocity.
Once the number of motors is determined by the ratio of the
step size to the substep size, the results described can be used
to determine molecular parameters, such as the interaction
stiffness. The alternative measure “synchronization” encodes
motor cooperativity and coupling based on molecular motor
properties. In this way, it serves as a measure for molecular
self-organization, which has been difficult to quantify so far.

V. CONCLUSION

We have described the coordinated transport of a cargo
by several elastically coupled motors using a Markov chain
model and rate transitions in a multiwell energy landscape,
which is specific for different motors such as myosin V or
kinesin I. We have introduced the synchronization parameter
q as an observable, which identifies the coupling between the
motors involved. This intermotor synchronization is defined
as the probability to find the motor system in its ground
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state and, in principle, can be extracted directly from cargo
trajectories. Our description allows to estimate nonlinear
relationships between loading force and velocity or power
for different coupling strengths. We have shown that the
cargo velocity increases to a maximum with increasing motor
synchronization until the cargo stops for full synchronization.
The synchronization described here results from the mutual
influences of repetitive stochastic molecular processes, which
play a significant role for self-organization in many biological
systems. Our work enables a comparison between theories
and measurements of intermotor coupling. Thereby it helps

to identify motor coupling during cargo transport in fluc-
tuation trajectories measured in both in vivo and in vitro
systems.
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