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Interaction dynamics of two colloids in a single optical potential
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The interaction of two diffusing particles is strongly influenced by their hydrodynamic coupling. At a tracking
rate of 10 kHz we are able to measure the 3D trajectories of two colloidal spheres in a single harmonic potential,
which was generated by scanning line optical tweezers. This common potential enables tilting, rotational, and
translational dynamics of the spheres, which we analyzed via the spheres position cross-correlations C(τ ) over
a time range of 10−4–2 s. We found that the dynamic interaction of the colloids is controlled by short-range
surface forces Fs , which are attractive in one direction and repulsive in the other two directions. This unexpected
behavior is supported by a theoretical model using two Langevin equations, which decouple for linear Fs ,
allowing a description with autocorrelation functions for collective and relative motions. We further demonstrate
that variations in salt concentration and reaction volumes significantly influence C(τ ) and the mean contact times
between the particles, which may offer new insights into biological particle interaction.
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I. INTRODUCTION

Long-range physical interactions control many short-
ranged specific reactions between diffusing particles in bi-
ology, chemistry or soft matter physics [1]. Direct interactions
such as electrostatic or van der Waals potentials can have
interaction ranges in the order of a particle diameter [2,3].
Indirect interactions such as hydrodynamic coupling between
two particles, however, can reach interaction lengths of even
several particle diameters [4] and often control time-variant
effects such as reactions kinetics or synchronization in biolog-
ical processes [5].

A well-established method to study hydrodynamic interac-
tions is to use colloidal spheres in confined areas or external
potentials, which enhance the interaction rate significantly.
Here, optical traps have become a key technology to induce
colloidal interactions, since trapping potentials and volumes
are easily adjustable and simultaneously tracking of the
colloids translational [6] or rotational [7] motion is possible.
More than a decade ago, it could be shown that the cross-
correlations C[r1(t),r2(t)] = C(τ ) of the position traces r1(t)
and r2(t) of two micron-sized spheres in two adjacent point
traps reveal a time-delayed anticorrelation of the sphere
positions [8,9]. In contrast to free particles in an unbound fluid,
where particles drag one another in the direction of motion,
the cross-correlation C(τ ) for two particles in an external
potential is negative since their correlated motion vanishes
faster than anticorrelated motion. Similar experiments for
other diffusion geometries and constraints were based on this
technique and analysis [6,10,11]. However, in all these studies
the particles separated by the two optical potentials did never
contact each other and the interaction times were limited by
the relative short autocorrelation times (τ < 50 ms) of optical
point traps.

In this study we investigate the interaction dynamics of
two spheres in a single potential, which is generated by a line
optical trap enabling particles to touch each other. Thereby
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both long- and short-range interactions can be investigated in
a time window of τ = 100 μs to τ = 1 s using a novel 3D
tracking technique [12]. Correlations of the spheres’ positions
are determined both experimentally and theoretically in all
three directions for various trapping volumes and electrostatic
surface potentials, as well as the mean contact times between
the spheres. We will show that this contact time represents a
time-differential association constant and is directly connected
to the relaxation time for relative motions.

II. EXPERIMENTAL PRINCIPLE

The experimental principle is sketched in Fig. 1. A highly
focused laser beam (λ = 1064 μm) is scanned with fscan =
10 kHz along a 10-μm-long line using an acousto-optic
deflector (AOD). By modulating the transmission of the AOD,
an intensity distribution with Gaussian profile of variable width
can be adjusted such that a particle diffuses in an approximately
3D harmonic optical potential V (r) = 1/2(κxx

2 + κyy
2 +

κzz
2) with trap stiffnesses κx < κz < κy . This choice of trap

stiffnesses permits a rather free diffusion of the particles in
the x direction (longitudinal motion), whereas motions in
the y and z directions (lateral motions) are confined to a
greater extent. When the laser focus sweeps over one sphere
(0.97 μm, silica, Bangs labs, size variation 10–15%), light is
coherently scattered and interferes with unscattered light in
the back-focal plane (BFP) of a detection lens (DL). While
the particles experience a time-averaged optical potential,
interference peaks from the sweeping laser focus are well
separable for each sphere with a single quadrant photodiode
(QPD) located in a plane conjugate of the DL’s BFP [12].
In our case, a second QPD increases both tracking range
and linearity [13] such that the linear relation Sn(t) − S0 ≈
↔
grn(t) between signal triplet Sn = (Sxn,Syn,Szn) and position
triplet rn = (xn,yn,zn) is well justified (n = 1,2 is the particle

number,
↔
g is the diagonal sensitivity matrix). As displayed in

Fig. 1(b), the position trajectories r1(t) and r2(t) from both
spheres diffusing in the elongated potential 30 μm away from
the coverslip are tracked with δt = 100 μs resolution and 5- to
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FIG. 1. (Color online) Experimental principle. (a) A laser trap
is scanned in the x direction at 10 kHz, generating an elongated
optical potential. (b) The trajectories r1(t) and r2(t) can be recovered
using back-focal plane interferometry with a quadrant photodiode.
(c) Projections of the 3D position histograms of two diffusing beads in
a single potential. (d) Particle diffusion can be divided into collective
(drag γc) and relative motion (drag γr ).

20-nm precision (see also the movies in Ref. [14]). Figure 1(c)
shows the corresponding histograms of 50 000 position pairs
and illustrates the different widths σi = (kBT /κi)1/2 of the
harmonic potentials in directions i = (x,y,z). Here kBT ≈
4 × 10−21 J is the thermal energy.

III. STATIC AND DYNAMIC INTERACTIONS

A. Hydrodynamic interactions

Neglecting rotation, the translational diffusion of two
spheres in a common harmonic potential with diagonal

stiffness matrix
↔
κ can be expressed by two coupled Langevin

equations(
v1

v2

)
=

(
μ11(R) μ12(R)

μ12(R) μ11(R)

) (
Fth1 + Fs1− ↔

κ r1

Fth2 + Fs2− ↔
κ r2

)
, (1)

where the function Fth(t) accounts for the stochastic forces
satisfying 〈Fth〉 = 0 and 〈Fthn(t),Fthm(t ′)〉 = 2kBT μ−1

nmδ(t −
t ′). μnm(R) is the mobility matrix, which couples the particles’
velocities vn and vm as a function of the center-to-center
distance R = |R| = |r1 − r2|. In addition, particle coupling
is mediated by a distance-dependent surface force Fsn(R). In
the case of two point traps and vanishing interaction forces
Fsn(R), the beads have a constant mean distance and the
Langevin equations of spheres 1 and 2 can be decoupled by
using a new set of collective (index c) and relative (index r)
coordinates, xic = (xi1 + xi2)/

√
2 and xir = (xi1 − xi2)/

√
2.

As illustrated in Fig. 1(d), the resulting collective and relative
motions of two spheres have different viscous drags, γc < γr .
The mobility coefficients μij (R) for motions described by
these coordinates are well-known functions of the particles’
distance R and can be expressed by an expansion series in
terms of 1/R [15].

The cross-correlation functions of two spheres
Ci(xi1,xi2) can be expressed by a superposition of
the autocorrelation functions Ai(τ ) of the eigenmodes,
Ci(xi1,xi2) = 1/2[Ai(xic) − Ai(xir )] [8,16] such that
Ci(τ ) = kBT /2κi[exp(−τμcκi) − exp(−τμrκi)] is negative.

(a)
A
A A

A
A

A

A

A
A
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FIG. 2. (Color online) Cross-correlations and difference of au-
tocorrelations. [(a)–(c)] Autocorrelation functions for x, y, and
z fluctuations of the correlated (©) an relative (�) coordinates.
The cross-correlation functions C(xi1,xi2,τ ) are depicted with black
triangles. The difference function �Ai = 1/2(Aic − Air ) is indicated
by the black line. (d) Potentials corresponding to collective (©) and
relative motions (�) in the x direction.

Due to hydrodynamic coupling, the decay times τc = γc/κ

and τr = γr/κ for these modes differ, i.e., the mobility
of relative motions is decreased, whereas the collective
mobility is increased (μc > μr or τc < τr ). Therefore, the
cross-correlation functions also show a distinct dependency on
the mean particle separation R, i.e., hydrodynamic coupling
gets more pronounced for decreasing R.

B. Static interactions

The situation changes when the two spheres can touch
each other and short-range interactions must be taken into
account. In general, the interparticle force Fs(R) is a nonlinear
function of the distance R of the two spheres. Whereas the
hydrodynamic coupling affects both the collective and relative
modes of motion, a static coupling C(τ = 0) as from pair
potentials affects only relative particle motions. Even though
transmitted by the fluid, lubrication forces solely take effect
in relative motion and increase with decreasing R [17,18].
Furthermore, in a single potential, all particle distances R

occur and thereby μnm(R) varies.

C. Superposition of correlation functions

The question is whether the cross-correlation C(τ ) in
the direct contact situation can be still expressed by the
autocorrelations of the collective and relative motions. Figure 2
displays, by use of the black curves (	), a typical set of
cross-correlations Ci(xi1,xi2) obtained from experimental data
in the x direction (a), y direction (b), and z direction (c).
Furthermore, the same data were used to calculate collective
and relative trajectories rc(t) and rr (t) and the autocorrelation
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function of these coordinates. The autocorrelation functions
Ai(xic) and Ai(xir ) are shown in Figs. 2(a)–2(c) with the
red (©) and blue (�) lines, respectively. We also computed
the differences �Ai(τ ) of the two autocorrelation functions,
�Ai(τ ) = 1/2[Ai(xic,τ ) − Ai(xir ,τ )], which are plotted as
black lines in Figs. 2(a)–2(c). As the first result of this study, we
find a good coincidence between Ci(τ ) and �Ai(τ ) in all three
dimensions, demonstrating that the cross-correlation Ci(τ ) of
two particles in a single potential still can be understood as
a superposition of the autocorrelation functions of correlated
and anticorrelated motion. It is noted that for nearly touching
spheres, we find a systematic tracking error. However, this
position error hardly affects the shape of the resulting Ci(τ )
(see S1 in Ref. [14]).

IV. CROSS-CORRELATION FUNCTIONS OF TWO
SPHERES IN A SINGLE POTENTIAL

Based on the analysis principles for two point traps,
we approximate the elongated common potential to be a
superposition of many point traps with mean separations
R ∈ [Rmin,Rmax]. We therefore average over all correlation
functions Ci(xi1,xi2,R) such that

Ci(xi1,xi2) =
∫ Rmax

Rmin

1

2
p(R)

[
Ai(xic) − Ai(xir )

]
dR. (2)

Here, p(R) denotes the equilibrium probability to find
the two beads at mean separation according to the local
potential depth V (R). Figure 2(d) depicts the Boltzmann
potentials for the collective modes in the x direction V (xc) =
−kBT ln[p(xc)] + V0c and the asymmetric interaction potential
V (xr ) = −kBT ln[p(xr )] + V0r for relative motion.

A further crucial question is whether and how information
about the short-range interaction between both spheres can be
extracted from the position cross-correlations. To derive an
expression for the distance-variant coupling, we approximate
the surface force in direction i to be linear, Fis ≈ κis(xi1 −
xi2), and the changes in mobility to be small such that
μic(R) ≈ const and μir (R) ≈ const. It is straightforward to
see that the additional force in Eq. (1) cancels out for the
correlated motions, since Fis1 = −Fis2. Thereby the Langevin
equations are linearized and can be decoupled by using normal
coordinates for relative and collective motions (see also S2 in
Ref. [14]). For direction xi we derive

Ci(τ ) = kBT

κi

e−τ/τic − kBT

κi + 2κis

e−τ/τir , (3)

with autocorrelation times τic(R) = γic(R)/κi and τir (R) =
γir (R)/(κi + 2κis). Here, the decay time τir is altered by the
additional force constant κis of the particle interaction force.
The analytical expressions in Eqs. (2) and (3) now enable
a qualitative explanation of the curves in Fig. 2. Both the
amplitudes and the decays of the exponentials in Eq. (3) differ
according to the force constants for relative and collective
modes.

A. Longitudinal motions

For the longitudinal motions mutual passage of the particles
is excluded and relative diffusion in the x direction takes

(a) (b)

(d)(c)

FIG. 3. (Color online) Interaction dynamics varying with the
fluctuation direction. (a) Normalized cross-correlation functions Cy

at four distinct mean separations. The dashed line represents a
superposition according to Eq. (3), and the symbols correspond to
regions in (b). The inset shows the same curves for short time
scales. (b) Probability distributions p(R,κ) for two different trap
stiffnesses κx to find the beads at a distance R. (c) Cx and Cz

for two different trap stiffnesses κx1 and κx2 = 5κx1 in the x and
z directions. (d) Theoretical curves according to the model of
Eq. (3) with γr = 2γc,κxs = 2κx1,κzs = −0.05κz (solid lines) and
κxs = 4κx2,κzs = −0.2κz (dashed lines).

place in a steeper potential [see Fig. 2(d)]. The increase of the
effective force constant for relative modes in the x direction
reduces the relative fluctuation widths

√
〈x2

ir1〉〈x2
ir2〉 and Cx

becomes positive [Fig. 2(a)].

B. Lateral motions

In lateral direction, a repulsive surface force Fs counteracts
the trapping force Fopt and facilitates relative diffusion.
Moreover, the particles touching each other tend to evade the
longitudinal force Fx,opt ≈ κxx such that �x < 2R. In this
case, the axis connecting the spheres is tilted and Cz < 0 (see
Fig. S2(b) in Ref. [14]). This tilting occurs most likely in
the z direction, where Fz,opt ≈ κzz < κyy. The static coupling
results in a correlation function that is also negative for τ → 0.
In the y direction, we find the cross-correlation function
to be negative on longer, but positive on short, time scales
[Figs. 2(b) and 3(a)]. In the submillisecond range, collective
modes dominate and tilting and electrostatic forces, which
only affect relative modes, are less important. According to
our model, κys must be negative, which would require a
yet-unknown attractive surface force in the y direction. It
seems possible that a hydrodynamic wake or lubrication forces
lead to a positive Cy on short time scales, whereas on longer
time scales this effect is hardly visible. The approximation of
a line potential allowing many several mean distances R by
several point traps according to Eq. (2) was further tested.
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V. IMPACT OF STATIC INTERACTIONS

A. Distance dependency

Since the lateral potential in the y direction is stiffer
than in the longitudinal x direction (κx � κy), the time for
the particle to explore the potential along x by diffusion
takes much longer. Therefore, we were able to separate
four different diffusion regions (N = 1 . . . 4) with a mean
particle separation RN and to measure the cross-correlations
Cy(y1,y2,RN ) [see Fig. 3(b)]. A set of cross-correlation
functions 〈y1(τ ),y2(τ )〉/

√
〈y1(τ )2〉〈y2(τ )2〉, normalized by the

standard deviation, is depicted in Fig. 3(a) for y-fluctuation
data at several distances. For larger RN , positive correlations
vanish on short time scales [black symbols in Fig. 3(a)] and
we find Cy(τ ) to be very similar compared to results known
from the double point-trap experiments at fixed separations.
For smaller RN , Cy(τ ) gets more pronounced in positive
and negative amplitudes. Here, the increasing influence of
short-range interactions described by κis on particle dynamics
becomes noticeable and leads to positive values in Cy(τ ) at
short times τ according to Eq. (3).

B. Varying the interaction propability by κx

The role of direct interactions for x and z fluctuations can be
explored by tuning the mean separation via the trap stiffness.
A stronger trap in the x direction narrows the interaction
volume [see p(R) in Fig. 3(b)] and increases the probability to
find particles at smaller separations R. Figure 3(c) shows the
normalized cross-correlation functions Cx(τ,κx) and Cz(τ,κx)
for two distinct κx . For longitudinal displacements, we find
two effects. First, the positive correlation strength increases
in stiffer optical potentials since, for smaller separations, the
influence of κs increases and the motion of one particle can
be transferred more directly to the other one [see Eq. (3)].
Second, the decay times τcx = γc/κx and τrx = γr/(2κxs + κx)
decrease for increasing κx , since correlation effects are limited
by the decay time of the trap. For Cz, the augmentation of direct
contacts and tilting events lead to stronger negative correlations
on shorter time scales. The suitability of Eq. (3) is also
demonstrated in Fig. 3(d), where we choose a representative
pair of trap stiffnesses κx1 and κx2 to show its effect on the
cross-correlation curves Cx and Cz.

C. Variation of the surface potential

The interaction dynamics of the two particles depend on the
reaction volume defined by κx and also on the surface potential
defined by κs . Hence, we varied the concentration of ions in
the solvent and hereby the influence of electrostatic forces. It
turns out that the lateral cross-correlations are a fairly sensitive
measure to changes in the salt concentration cNaCl and thereby
to changes in surface charges and in Coulomb screening
lengths 	 ∼ 1/cNaCl. We find that the cross-correlations
Cz(τ,cNaCl) become more negative with increasing cNaCl [see
Fig. 4(a)]. The effect of a decreased 	 results in a shorter mean
longitudinal separation along x and might enable stronger
axial displacements z1(t) and z2(t) within the confining
potential [see Fig. 4(b)]. Therefore, anticorrelated particle
fluctuations 〈z1,z2〉 become more pronounced with increasing

(a) (b)

FIG. 4. (Color online) Dependence of interaction dynamics on
salt concentrations. (a) Cross-correlation function for fluctuations
in the z direction for three different salt concentrations. (b) Longer
screening lengths (low cNaCl) result in longer mean particle separa-
tions and thereby might hinder the tilting of the spheres relative to
each other.

cNaCl [Figs. 4(a) and 4(b)]. Remarkably, relative modes of
motion as those distinct in the z direction reveal small changes
in short-range interactions more effectively than position
histograms or potentials (see also S3 and Fig. S4 in Ref. [14]).

VI. CONTACT PROBABILITY

A. Time-differential association constant

Our tracking system enables insights into interaction
processes occurring at broad temporal bandwidths. Many
interactions, e.g., binding between ligand A and receptor B
with concentrations [A] and [B] in the unbound state and [AB]
in the bound state, cannot be completely described by equi-
librium dissociation (kD) or association (kA) constants, where
kD = k−1

A = ([A][B])/[AB] = τon/τoff = pon/poff . Here the
probability of finding the particle in the on or off state is
described by pon,off . τon,off is the period the particle in in the
off or on state, respectively. Often τon is the time required
for two binding partners to accomplish their chemical bond.
Since the interaction dynamics between A and B are controlled
by thermal fluctuations, the time-variant contact period τon

where the two particles are in close contact and can bind is an
important parameter, which can be extracted with our tracking
system at 100-μs resolution [see Fig. 5(c)]. If non(τon) is the
number of events per second to find A and B in close contact,
kA ≈ 1

Tmesfscan

∫ Tmes

τmin
non(τon)dτon can be expressed as the aver-

age over the total measurement time Tmes = ∑
(τon + τoff).

In other words, non(τon) acts as a time-differential association
constant, allowing us to estimate the contact probability within
a specific time window or reaction volume.

B. Contact period

The two 1-μm silica beads trapped in a single optical
potential serve as a model system to explore the impact
of various controls. Of particular interest is the dependence
of the conctact period τon and the event rate non(τon) on
the effective reaction volume σxrσyrσzr . We assume that the
particles are capable to react as soon as their distance falls
below a certain threshold R0 [Fig. 5(a)]. State transitions over
a molecular potential well during τon, which are typically
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(a)

(b) (c)

FIG. 5. (Color online) Dependence of interaction dynamics on
reaction volume. (a) Relative distance trajectory R(t) and position
histogram p(R). (b) Number of contacts for contact durations
τmin as a function of the relative relaxation time. (c) Number of
contacts non(τon) as a function of contact time and various reaction
volumes σ .

described by the Kramers theory, are not considered here. By
controlling the effective reaction volume inside the optical
trap, we are able to steer the effective particle density
without introducing additional friction from nearby particles
or confining walls and can study its effect on the distribution
of contact periods non(τon). The distribution of contact periods
non(τon) in Fig. 5(c) reveals that short contact times occur more
frequently than longer ones.

C. Reaction volume and relaxation time

The effective reaction volume σxrσyrσzr ∼ 1/
√

κxκyκz

was varied by changing the longitudinal trap stiffness κx ,
which strongly effects the contact probability. The effective
stiffness κxr = (κx + 2κxs) describes the width of the prob-
ability distribution p(R,κxr ) of the relative bead distances
R. Relaxation of the relative mode within the potential
V (R) = −kBT ln[p(R)] + V0r occurs with the relaxation time
τr = γr/(κx + 2κxs) according to Eq. (3), meaning that all
relative motions within V (R) are governed with τr . For short
times τ , where τ ∼ 1/γr , the distribution of contact periods
shows a power-law behavior (α ≈ −2/3 for R0 = 0.85 μm,

a = const.) which is unitary for all measured reaction volumes,

non(τ,σx) = a
kBT

γrσ 2
x

τ α = a

τr

τα. (4)

For the shortest measurable contact period nmin, Fig. 5(b)
reveals that the contact probability non(τmin) is inverse propor-
tional to the relaxation time τr of the relative modes and thereby
nonlinearly increasing with decreasing reaction volume ∼σxr .
This means, in other words, that a faster relaxation ∼1/τr of
the relative particle motions increases the particle interaction
probability. Since the total number of contacts scales linearly
with measurement time Tmes and non ∼ 1/σ 2

x , decreasing the
interaction volume is always more effective than increasing
the measurement time to enhance the reaction probability.

VII. CONCLUSION

In conclusion, we measured fluctuation data of two beads
trapped in a single potential and showed that the concept of
position cross-correlations can be maintained by incorporat-
ing a short-range interaction force in the Langevin model.
Differing from hydrodynamic coupling of two particles in two
traps, the interplay between relative and collective modes of
motion varied strongly with the direction of observation and
with the delay time, which we were able measure on a very
broad range from 100 μs to 2 s. Lateral position correlations
turned out to be a robust and sensitive tool to resolve small
changes in the interaction force as, e.g., due to different
salt concentrations. Furthermore, we showed that shorter
relaxation times of the relative particle motions increase their
interaction probability and contact duration. The latter can be
displayed as a time-differential association constant decreasing
with the contact time (see S5 in Ref. [14] for details). We think
that our work will be useful in colloidal sciences but also in
understanding and controlling pharmaceutical or biophysical
interaction processes.
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