Uni-Logo
You are here: Home Laboratories Zengerle, Roland Research Electrochemical Energy Systems

Electrochemical Energy Systems | Dr. Simon Thiele, Dr. Matthias Breitwieser, Dr. Severin Vierrath

Fuel Cells, Batteries (Li-Air, Li-S, Li-Si and Redox-Flow), Electrolysis and Bio-Imaging


Competence | Examples of Applications | Projects and Sponsors | Team | Important Publications |

 

Competence

REM-Aufnahme Kohlenstoff

We do research on fuel cells, batteries and electrolyzers. Our focus is on innovative manufacturing methods and new materials, as well as on 3D imaging techniques for such devices.


Manufacturing and characterization
Especially for fuel cells we develop new manufacturing methods and alternative materials. Via novel membrane systems we create fuel cells with higher power and longer life-times compared to the state-of-the-art. We research carbon-based, metal-free materials as alternatives to platinum as fuel cell catalysts. Further, we transfer these approaches to other electrochemical systems, such as Li-Air or Redox-Flow batteries. We characterize our new technologies and materials in-situ in fuel cell and battery test benches, as well as ex-situ in our micro-analysis lab.

Imaging and Virtual Design
As a basis for understanding electrochemical energy converters, we develop and use 3D imaging techniques. We use FIB-SEM tomography and X-Ray tomography to obtain 3D reconstructions of fuel cell and battery electrodes and gas transport layers. With these reconstructions we calculate performance-determining parameters. Further we use virtual design approaches to investigate changes of these parameters which result from changes in the morphology of the device. The knowledge we gain from such analysis is being applied to the manufacturing processes of electrochemical systems. Furthermore, we use our expertise in imaging methods for the recosntruction of biological samples.

 

Examples of Applications

 

Manufacturing of innovative membrane-electrode-assemblies for fuel cells
Typically, membranes in fuel cell application are being produced as free-standing membranes for further processing. In contrast to that, we apply the membrane in liquid form as a thin layer on top of the gas diffusion electrodes. After drying, this leads to a strong reduction of the overall cell resistance, and therefore to a higher fuel cell power density. We further reinforce the so manufactured fuel cells by implementing nano fibers and nano particles for enhanced mechanical and chemical stress-resistance.

Graphene and carbon nano tubes as catalysts for the oxygen reduction reaction
The high cost of Platinum still hinders a wide spread market acceptance of fuel cells. We research doped graphene and carbon nano tubes, as well as non-precious metal catalysts as potential alternatives to the costly platinum. These materials are synthesized and characterized in our own labs.

Reconstruction of electrodes for mass-transport simulation
Via an in-house developed procedure for filling the pore space of microporous materials by atomic layer deposition, we are able to obtain reliable 3D reconstructions of the nano morphology of fuel cell and battery catalyst layers. We use these reconstructions to simulate mass-transport as a performance-limiting parameter.

 

Projects and Sponsors

 

Current research projects

  • Inspire, EU Horizon 2020
  • Capri, BLBT
  • Neurofast, BMBF
  • PowerMee, BMBF
  • Repos, BMBF
  • Dekade, BMBF

 

Past Projects 

 

 

Team

 

PM 2017 Ausschnitt

 

Head

 

Scientific staff

  • Dr. Witali Beichel

 

PostDoc

 

PhD Candidate

  • Rico Moroni
  • Carolin Klose
  • Friedemann Hegge
  • Melanie Bühler
  • Thomas Böhm
  • Brian Shanahan

 

Student assistant

  • Peter Holzapfel
  • Antonio Yepiz
  • Naveen Guruprasad
  • Luca Bohn

 

Past member

  • Arne Götze
  • Zsoltan Danilo
  • Dr. Lukas Zielke
  • Armin Hartmann
  • Kevin Holdcroft
  • Michaela Frase


 

Important Publications

 

Electrocatalysis for fuel cells

  • C. V. Pham, M. Klingele, B. Britton, K. R. Vuyyuru, T. Unmuessig, S. Holdcroft, A. Fischer, S. Tiele, Tridoped Reduced Graphene Oxide as a Metal‐Free Catalyst for Oxygen Reduction Reaction Demonstrated in Acidic and Alkaline Polymer Electrolyte Fuel Cells, 2017, Advanced Sustainable Systems


Manufacturing of fuel cells

  • M. Breitwieser, C. Klose, A. Hartmann, A. Büchler, M. Klingele, S. Vierrath, R. Zengerle, S. Thiele, Cerium Oxide Decorated Polymer Nanofibers as Effective Membrane Reinforcement for Durable, High‐Performance Fuel Cells, 2017, Advanced Energy Materials
  • M. Klingele, M. Breitwieser, R. Zengerle, S. Thiele, Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells, 2015, Journal of Materials Chemistry A

 

Imaging and virtual design of fuel cells, electrolysers and batteries

  • P. Lettenmeier, S. Kolb, N. Sata, A. Fallisch, L. Zielke, S. Thiele, A. S. Gago, K. A. Friedrich, Comprehensive investigation of novel pore-graded gas diffusion layers for high-performance and cost-effective proton exchange membrane electrolyzers, 2017, Energy and Environmental Science
  • S. Vierrath, F. Güder, A. Menzel, M. Hagner, R. Zengerle, M. Zacharias, S. Thiele, Enhancing the quality of the tomography of nanoporous materials for better understanding of polymer electrolyte fuel cell materials, 2015, Journal of Power Sources
  • L. Zielke, T. Hutzenlaub, D. R. Wheeler, C. W. Chao, I. Manke, A. Hilger, N. Paust, R. Zengerle, S. Thiele, Three‐Phase Multiscale Modeling of a LiCoO2 Cathode: Combining the Advantages of FIB–SEM Imaging and X‐Ray Tomography, 2015, Advanced Energy Materials
  • L. Zielke, T. Hutzenlaub, D. R. Wheeler, I. Manke, T. Arlt, N. Paust, R. Zengerle, S. Thiele, A Combination of X‐Ray Tomography and Carbon Binder Modeling: Reconstructing the Three Phases of LiCoO2 Li‐Ion Battery Cathodes, 2014, Advanced Energy Materials

 

Futher publications

  1. A fully spray-coated fuel cell membrane electrode assembly using Aquivion ionomer with a graphene oxide/cerium oxide interlayer. M. Breitwieser, T. Bayer, A. Büchler, R. Zengerle, S. M. Lyth, S. Thiele, Journal of Power Sources, 2017, 351, 145–150.
  2. Hydrogen concentrator demonstrator module with 19.8% solar-to-hydrogen conversion efficiency according to the higher heating value. A. Fallisch, L. Schellhase, J. Fresko, M. Zedda, J. Ohlmann, M. Steiner, A. Bösch, L. Zielke, S. Thiele, F. Dimroth, T. Smolinka, International Journal of Hydrogen Energy, 2017
  3. Tailoring the membrane-electrode interface in PEM fuel cells: A review and perspective on novel engineering approaches. M. Breitwieser, M. Klingele, S. Vierrath, R. Zengerle, S. Thiele, Advanced Energy Materials, accepted 2017,
  4. Cerium Oxide Decorated Polymer Nanofibers as Effective Membrane Reinforcement for Durable, High-Performance Fuel Cells. M. Breitwieser, C. Klose, A. Hartmann, A. Büchler, M. Klingele, S. Vierrath, R. Zengerle, S. Thiele, Advanced Energy Materials, 2017, 7, 1602100.
  5. Simple fabrication of 12 μm thin nanocomposite fuel cell membranes by direct electrospinning and printing. M. Breitwieser, C. Klose, M. Klingele, A. Hartmann, J. Erben, H. Cho, J. Kerres, R. Zengerle, S. Thiele, Journal of Power Sources, 2017, 337, 137–144.
  6. Investigation on PEM water electrolysis cell design and components for a HyCon solar hydrogen generator. A. Fallisch, L. Schellhase, J. Fresko, M. Zechmeister, M. Zedda, J. Ohlmann, L. Zielke, N. Paust, T. Smolinka, Special Issue on The 21st World Hydrogen Energy Conference (WHEC 2016), 13-16 June 2016, Zaragoza, Spain, 2017, 42, 13544–13553.
  7. Sulfur doped reduced graphene oxide as metal-free catalyst for the oxygen reduction reaction in anion and proton exchange fuel cells. M. Klingele, C. Pham, K. R. Vuyyuru, B. Britton, S. Holdcroft, A. Fischer, S. Thiele, Electrochemistry Communications, 2017, 77, 71–75.
  8. Multiscale Tomography-Based Analysis of Fuel Cells: Towards a Fully Resolved Fuel Cell Reconstruction. M. Klingele, S. Vierrath, R. Moroni, S. Thiele, Journal of Electrochemical Energy Conversion and Storage, accepted 2017,
  9. Electrospun sulfonated poly(ether ketone) nanofibers as proton conductive reinforcement for durable Nafion composite membranes. C. Klose, M. Breitwieser, S. Vierrath, M. Klingele, H. Cho, A. Büchler, J. Kerres, S. Thiele, Journal of Power Sources, 2017, 361, 237–242.
  10. High surface hierarchical carbon nanowalls synthesized by plasma deposition using an aromatic precursor. K. Lehmann, O. Yurchenko, A. Heilemann, S. Vierrath, L. Zielke, S. Thiele, A. Fischer, G. Urban, Carbon, 2017, 118, 578–587.
  11. Comprehensive Investigation of Novel Pore-Graded Gas Diffusion Layers for High-Performance and Cost-Effective Proton Exchange Membrane Electrolyzers. P. Lettenmeier, S. Kolb, L. Zielke, S. Thiele, A. Fallisch, N. Sata, A. S. Gago, K. A. Friedrich, Energy Environ. Sci., 2017,
  12. Study of the Mechanisms of Internal Short Circuit in a Li/Li Cell by Synchrotron X-ray Phase Contrast Tomography. F. Sun, R. Moroni, K. Dong, H. Markötter, D. Zhou, A. Hilger, L. Zielke, R. Zengerle, S. Thiele, J. Banhart, I. Manke, ACS Energy Letters, 2017, 2, 94–104.
  13. Tridoped Reduced Graphene Oxide as a Metal-Free Catalyst for Oxygen Reduction Reaction Demonstrated in Acidic and Alkaline Polymer Electrolyte Fuel Cells. C. van Pham, M. Klingele, B. Britton, K. R. Vuyyuru, T. Unmuessig, S. Holdcroft, A. Fischer, S. Thiele, Advanced Sustainable Systems, 2017, 1, 1600038.
  14. A Review on Metal-Free Doped Carbon Materials Used as Oxygen Reduction Catalysts in Solid Electrolyte Proton Exchange Fuel Cells. M. Klingele, C. van Pham, A. Fischer, S. Thiele, Fuel Cells, 2016, 16, 522–529.
  15. A completely spray-coated membrane electrode assembly. M. Klingele, B. Britton, M. Breitwieser, S. Vierrath, R. Zengerle, S. Holdcroft, S. Thiele, Electrochemistry Communications, 2016, 70, 65–68.
  16. Water management in novel direct membrane deposition fuel cells under low humidification. M. Breitwieser, R. Moroni, J. Schock, M. Schulz, B. Schillinger, F. Pfeiffer, R. Zengerle, S. Thiele, International Journal of Hydrogen Energy, 2016, 41, 11412–11417.
  17. 3D Analysis of the Porosity in MgB2 Wires Using FIB Nanotomography. M. Hagner, J. Fritz, P. Alknes, C. Scheuerlein, L. Zielke, S. Vierrath, S. Thiele, B. Bordini, A. Ballarino, IEEE Transactions on Applied Superconductivity, 2016, 1.
  18. Multi-Scale Correlative Tomography of a Li-Ion Battery Composite Cathode. R. Moroni, M. Borner, L. Zielke, M. Schroeder, S. Nowak, M. Winter, I. Manke, R. Zengerle, S. Thiele, Scientific Reports, 2016, 6, 30109.
  19. Morphological Evolution of Electrochemically Plated/Stripped Lithium Microstructures Investigated by Synchrotron X-ray Phase Contrast Tomography. F. Sun, L. Zielke, H. Markotter, A. Hilger, D. Zhou, R. Moroni, R. Zengerle, S. Thiele, J. Banhart, I. Manke, ACS nano, 2016, 10, 7990 – 7997
  20. The reasons for the high power density of fuel cells fabricated with directly deposited membranes. S. Vierrath, M. Breitwieser, M. Klingele, B. Britton, S. Holdcroft, R. Zengerle, S. Thiele, Journal of Power Sources, 2016, 326, 170–175.
  21. Directly deposited Nafion/TiO 2 composite membranes for high power medium temperature fuel cells. N. Wehkamp, M. Breitwieser, A. Büchler, M. Klingele, R. Zengerle, S. Thiele, RSC Adv, 2016, 6, 24261–24266.
  22. Influence of carbon substrate on the electrochemical performance of carbon/manganese oxide hybrids in aqueous and organic electrolytes. M. Zeiger, S. Fleischmann, B. Krüner, A. Tolosa, S. Bechtel, M. Baltes, A. Schreiber, R. Moroni, S. Vierrath, S. Thiele, V. Presser, RSC Adv, 2016, 6, 107163–107179.
  23. Three-dimensional morphology of the interface between micro porous layer and catalyst layer in a polymer electrolyte membrane fuel cell. L. Zielke, S. Vierrath, R. Moroni, A. Mondon, R. Zengerle, S. Thiele, RSC Adv, 2016, 6, 80700–80705.
  24. Synchrotron X-ray Tomographic Study of a Silicon Electrode Before and After Discharge and the Effect of Cavities on Particle Fracturing. L. Zielke, F. Sun, H. Markötter, A. Hilger, R. Moroni, R. Zengerle, S. Thiele, J. Banhart, I. Manke, ChemElectroChem, 2016, 3, 1170–1177.
  25. Improved Pt-utilization efficiency of low Pt-loading PEM fuel cell electrodes using direct membrane deposition. M. Breitwieser, M. Klingele, B. Britton, S. Holdcroft, R. Zengerle, S. Thiele, Electrochemistry Communications, 2015, 60, 168–171.
  26. Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells. M. Klingele, M. Breitwieser, R. Zengerle, S. Thiele, Journal of Materials Chemistry A, 2015, 3, 11239–11245.
  27. Quantification of artifacts in scanning electron microscopy tomography: Improving the reliability of calculated transport parameters in energy applications such as fuel cell and battery electrodes. M. Klingele, R. Zengerle, S. Thiele, Journal of Power Sources, 2015, 275, 852–859.
  28. Enhancing the quality of the tomography of nanoporous materials for better understanding of polymer electrolyte fuel cell materials. S. Vierrath, F. Güder, A. Menzel, M. Hagner, R. Zengerle, M. Zacharias, S. Thiele, Journal of Power Sources, 2015, 285, 413–417.
  29. Morphology of nanoporous carbon-binder domains in Li-ion batteries—A FIB-SEM study. S. Vierrath, L. Zielke, R. Moroni, A. Mondon, D. R. Wheeler, R. Zengerle, S. Thiele, Electrochemistry Communications, 2015, 60, 176–179.
  30. Degradation of Li/S Battery Electrodes On 3D Current Collectors Studied Using X-ray Phase Contrast Tomography. L. Zielke, C. Barchasz, S. Waluś, F. Alloin, J.-C. Leprêtre, A. Spettl, V. Schmidt, A. Hilger, I. Manke, J. Banhart, R. Zengerle, S. Thiele, Scientific Reports, 2015, 5, 10921.
  31. Three-Phase Multiscale Modeling of a LiCoO2 Cathode: Combining the Advantages of FIB–SEM Imaging and X-Ray Tomography. L. Zielke, T. Hutzenlaub, D. R. Wheeler, C.-W. Chao, I. Manke, A. Hilger, N. Paust, R. Zengerle, S. Thiele, Advanced Energy Materials, 2015, 5, 1401612.
  32. Three-dimensional electrochemical Li-ion battery modelling featuring a focused ion-beam/scanning electron microscopy based three-phase reconstruction of a LiCoO2 cathode. T. Hutzenlaub, S. Thiele, N. Paust, R. Spotnitz, R. Zengerle, C. Walchshofer, Electrochimica Acta, 2014, 115, 131–139.
  33. On the importance of FIB-SEM specific segmentation algorithms for porous media. M. Salzer, S. Thiele, R. Zengerle, V. Schmidt, Materials Characterization, 2014, 95, 36–43.
  34. Tomography based screening of flow field / current collector combinations for PEM water electrolysis. L. Zielke, A. Fallisch, N. Paust, R. Zengerle, S. Thiele, RSC Advances, 2014, 4, 58888–58894.
  35. A Combination of X-Ray Tomography and Carbon Binder Modeling: Reconstructing the Three Phases of LiCoO2 Li-Ion Battery Cathodes. L. Zielke, T. Hutzenlaub, D. R. Wheeler, I. Manke, T. Arlt, N. Paust, R. Zengerle, S. Thiele, Advanced Energy Materials, 2014, 4, 1301617.
  36. FIB/SEM-based calculation of tortuosity in a porous LiCoO2 cathode for a Li-ion battery. T. Hutzenlaub, A. Asthana, J. Becker, D. R. Wheeler, R. Zengerle, S. Thiele, Electrochemistry Communications, 2013, 27, 77–80.
  37. How Coarsening the 3D Reconstruction of a Porous Material Influences Diffusivity and Conductivity Values. T. Hutzenlaub, J. Becker, R. Zengerle, S. Thiele, ECS Electrochemistry Letters, 2013, 2, F14‐F17.
  38. Modelling the water distribution within a hydrophilic and hydrophobic 3D reconstructed cathode catalyst layer of a proton exchange membrane fuel cell. T. Hutzenlaub, J. Becker, R. Zengerle, S. Thiele, Journal of Power Sources, 2013, 227, 260–266.
  39. Multiscale tomography of nanoporous carbon-supported noble metal catalyst layers. S. Thiele, T. Fürstenhaupt, D. Banham, T. Hutzenlaub, V. Birss, C. Ziegler, R. Zengerle, Journal of Power Sources, 2013, 228, 185–192.
  40. Three-Dimensional Reconstruction of a LiCoO2 Li-Ion Battery Cathode. T. Hutzenlaub, S. Thiele, R. Zengerle, C. Ziegler, Electrochemical and Solid-State Letters, 2012, 15, A33.
  41. Nano-morphology of a polymer electrolyte fuel cell catalyst layer: imaging, reconstruction and analysis. S. Thiele, R. Zengerle, C. Ziegler, Nano Research, 2011, 4, 849–860.
  42. Direct three-dimensional reconstruction of a nanoporous catalyst layer for a polymer electrolyte fuel cell. C. Ziegler, S. Thiele, R. Zengerle, Journal of Power Sources, 2011, 196, 2094–2097.

 

Personal tools