ZnO Contrasted Nano Tomographies of Fuel Cell and Battery Components

<u>Severin Vierrath*1</u>, Lukas Zielke¹, Riko Moroni¹, Andrew Mondon², Roland Zengerle¹ and Simon Thiele^{1,3}

¹University of Freiburg, Department of Microsystems Engineering, Laboratory for MEMS Applications, 79110 Freiburg, Germany

²Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg, ³FIT, University of Freiburg, Georges-Koehler-Allee 105, 79104 Freiburg, Germany * severin.vierrath@imtek.de

The performance and stability of fuel cells, batteries and other electrochemical systems heavily relies on the nano-morphology of core components, e.g. electrodes or interfaces. To investigate these nano-porous materials or to create models based on the real structure, FIB-SEM tomography is the method of choice. However, as these nano-porous materials comprise carbon, typical infiltration methods fail to give good contrast between carbon and pores.^[1] We recently demonstrated the infiltration of a fuel cell electrode with ZnO via atomic layer deposition yielding high contrast.^[2] In this work we present the adaption of this technique to further samples: We calculate the nano porosity of the carbon binder domain of a LiCoO₂ battery (58%) and use a model to predict the swelling induced volume expansion (114%) of the contained PVDF.^[3] The reconstruction of the interface of a fuel cell catalyst layer and microporous layer yields roughnesses of 102 nm and 129 nm respectively and indicates that the interface behaves like a homogeneous transitional region on the investigated scale.

Figure 1 From left to right: A reconstructed catalyst layer^[2] (Gore PRIMEA A510.1), a microporous layer (SGL Sigracet 25BC), the interface of the catalyst layer and the microporous layer of a gas diffusion electrode (Paxitech 0.5 mgPt/cm²) and the carbon binder domain of a LiCoO₂ battery^[3] (fabricated by Saft America).

Keywords: FIB-SEM tomography, electrode, conductive additive, PEM fuel cell, Li battery

- [1] H. Schulenburg, B. Schwanitz, N. Linse, G. G. Scherer, A. Wokaun, J. Krbanjevic, R. Grothausmann, I. Manke, *The Journal of Physical Chemistry C* **2011**, *115*, 14236.
- [2] S. Vierrath, F. Güder, A. Menzel, M. Hagner, R. Zengerle, M. Zacharias, S. Thiele 2015, 285, 413.
- [3] S. Vierrath, L. Zielke, R. Moroni, A. Mondon, D. R. Wheeler, R. Zengerle, S. Thiele, *Electrochem. Commun.* **2015**, *60*, 176.