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An adhesive DPD wall model for dynamic wetting
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Abstract – A novel method for the treatment of solid-liquid interfaces in the framework of
dissipative particle dynamics (DPD) is presented. The solid is represented by an amorphous,
thermally rough ensemble of particles. Since the density of this phase is chosen commensurate
to the liquid, artefacts of alternative wall models such as particle layering or spurious variations
in temperature are avoided. An adjustable static contact angle permits the convenient study
of complex wetting phenomena. We explore the physical behaviour of this boundary model with
respect to bulk Poiseuille and Couette flow as well as forced wetting and the behaviour of dynamic
contact angles.
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Introduction. – Phenomena involving dynamic
spreading of fluids on solid surfaces are of great impor-
tance in many traditional industrial processes, but also in
modern micro- and nanofluidics applications like passive
transport, structuring and supply of small amounts of
liquids [1]. The general dynamics of capillary-driven flow
in arbitrary geometries is cumbersome to study with
conventional mesh-based computational fluid dynamics
(CFD) methods that solve the discretized Navier-Stokes
equations (NSE). Difficulties not only arise in representing
the shape and dynamics of a capillary meniscus [2], but
also in resolving the microscopic region where it contacts
the boundary [3].
Kinetic simulation schemes such as the grid-based

Lattice Boltzmann method (see [4] and references
therein) or meshless, particle-based methods such as
dissipative particle dynamics (DPD) [5–7] permit to
address these problems in novel ways [8]. Originally
invented to model the dynamics of solvents on mesoscopic
length and time scales, hydrodynamics is represented by
the collision dynamics of an ensemble of pseudo-atoms.
Fluid properties but also flow boundary conditions emerge
as a consequence of the chosen particle interactions.
In this respect, especially DPD is receiving a rapidly

increasing number of contributions as it bears some resem-
blance with molecular dynamics: the particle dynamics is

governed by Newton’s equation of motion and a generic
equation of state can be adopted by including appropriate
conservative inter-particle forces. Within the so-called
many-body DPD (MDPD), liquid-vapor (lv -) coexistence
can be achieved by making the forces density depen-
dent [9] or deriving them from an appropriate excess free
energy [10]. With a suitable choice of model parameters,
the vapour phase can be suppressed in favour of a sharp
lv -interface [9,11] that can easily be tracked and visual-
ized. At least for scales larger than the thermal capillary
length, below which thermal fluctuations dominate,
the statics [9] as well as the dynamics [12] of capillary
lv -interfaces compare well to continuum solutions.
In modeling solid-liquid (sl -) interfaces most emphasis

has been put on imposing rigorous macroscopic boundary
conditions (BC), such as no slip at sharply defined
impenetrable interfaces. This originates from a strictly
mesoscopic interpretation of DPD, where single particles
represent “lumps of fluid” on scales well above atomistic
ones [7]. In general then, the forces exerted on the
liquid at the interface must be matched carefully in
order to avoid spurious behaviour such as particle
layering [13], variations in temperature [14] or artificial
slip [15]. This has led to rather specialized construc-
tions involving mostly flat [13,15] or spherically curved
sl -interfaces [16,17]. In some cases it has been found
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useful to represent the solid by yet another liquid phase
without an actual solid structure [11,17].
For studying wetting phenomena on structured or

patterned substrates [18], available rigorous boundary
models appear rather difficult to handle. In this work
we introduce a solid boundary model that circumvents
the above-mentioned problems in a much simpler way,
by representing the solid by an amorphous, thermally
rough configuration of particles, resulting in a thin diffuse
sl -interface. We show how together with an MDPD
scheme a flexible framework for representing dynamic
wetting on possibly textured boundaries emerges.
This paper is organized as follows: after briefly outlining

the MDPD scheme, we illustrate the construction of the
boundary model, which is in turn investigated phenomeno-
logically with respect to wetting behaviour, flow boundary
conditions, and forced wetting including the characteris-
tics of dynamic contact angles.

The many-body DPD scheme. – In DPD, particles
interact via pairwise central forces Fij =F

R
ij +F

D
ij +F

C
ij .

If ri denotes the particle position and vi its velocity, the
conservative force in standard DPD is FCij =Aw

C(rij)eij ,
where rij = ri− rj , rij = |rij | and eij = rij/rij . The weight
function wC(r) vanishes for an inter-particle distance r
larger than a cutoff radius rc.
The random and dissipative forces are FRij = qw

R(rij)×
ξijrij and FDij =−γwD(rij)(vij · eij)eij , respectively,
where vij = vi−vj . These forces constitute a thermostat
if the amplitudes q of the random variable ξij and the
viscous dissipation γ satisfy a fluctuation-dissipation
theorem: q2 = 2γkBT and w

R(r)2 =wD(r), where kBT
denotes the desired temperature in units of Boltzmann’s
constant kB. To integrate the resulting equations of
motion, we use a velocity Verlet algorithm [19] with a
particle mass m= 1 and a time step dt= 0.01.
The conservative interaction FC is usually derived

from a rather soft and unspecific weight function wC,
permitting a fairly large integration time step. A common
choice for wC which we also use in this paper is wC =
(1− r/rc) and wR =wC. It follows that the EOS becomes
at most quadratic in the average particle density ρ.
Liquid-vapor interfaces and hence free capillary sur-

faces can only exist for more complex EOS, and FCij
must then be augmented by density-dependent contri-
butions [9,10,20]. This class of schemes is termed
multi-body DPD (MDPD). Here, the approach of
Warren [9] is pursued in which the repulsive part of
the force depends on a weighted average of the particle
density, while the attractive part is density independent:

FCij =Aijw
C(rij)eij +B(ρi+ ρj)wd(rij)eij , (1)

with an additional weight function wd(r) = 15/(2πr
3
d)×

(1− r/rd)2. In eq. (1) we let Aij depend on a pair of
particle indices, allowing us to distinguish between interac-
tions within the liquid (l) (All ≡A=−40.0), the solid (s)
(Ass ≡A) and across the solid-liquid (sl)-interface (Asl).

Table 1: The simulation parameters vary only slightly from the
ones used in [9] (A=−40.0, B = 25.0, ρ= 6.08). All quantities
are given in model units (m.u.). All simulation results are at
rc = kBT = 1.

Parameter Symbol m.u.

Fluid particle density ρ 6.00
Interaction range (attr.) rc 1.0
Interaction range (rep.) rd 0.75
Amplitude of FR q 6.00
Attraction parameter A −40.0
Repulsion parameter B 25.0
Surface tension σ 7.51± 0.04
Viscosity η 7.41± 0.06

We will show that Asl can be used to adjust the static
wetting behaviour. The repulsive part with B > 0 acts over
a slightly smaller interaction radius rd. ρi at the location of
particle i is the instantaneously weighted average density
ρi =

∑
i�=j wd(rij). All simulation parameters are given in

table 1. Throughout this paper all quantities are given
in model units.

The boundary model. – Equation (1) implies that
the force law depends on the local environment. With
respect to a mesoscopic point of view, this environment
should be the same also for particles directly at the
sl -interface. We illustrate how this can be achieved
by creating a sl -system consisting of a liquid film
confined between two walls. Starting with a free-standing
equilibrated, planar slab of fluid of thickness 24rc in the
x-direction and dividing it into two boundary regions
of thickness 2rc and an inner (liquid) region of thick-
ness 20rc, the nominal positions xint =±10rc of the
sl -interfaces are defined. Periodic boundary conditions
are applied in the y- and z-direction with a periodicity of
12rc× 20rc.
At some time t0 after equilibration (already 300

integration time steps suffice), each particle i at position
ri(t0) = (xi(t0), yi(t0), zi(t0)) with |xi(t0)|> |xint| is
permanently attached to the site ri(t0) by a spring
force Fw =−ks(ri(t)− ri(t0)), leading to solidification of
the boundary regions. To be consistent with eq. (1), the
inter-particle interactions in the solid are kept, only the
value of Asl is then set according to the desired wetting
conditions. Additionally, a weak external repelling force
Fext acting on liquid particles beyond xint, i.e. within
the solid boundary, is employed to keep isolated liquid
particles from diffusing into the solid phase indefinitely,
see upper panel of fig. 1.
After a short re-equilibration, a sharp but smooth

interface develops, shown for Asl =−35.0 and ks = 3.0, in
fig. 1a) (thick solid line), where the interface width is less
than 1rc. The liquid density profile induced by this amor-
phous, thermally roughened wall is compared with two
other realisations of a solid phase: i) a frozen amorphous
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Fig. 1: Density profiles depending on the slit coordinate x.
Upper panel: schematic of the diffuse interface (full dots: solid
phase, circles: liquid). For |x|> |xint± d|, d= 0.25rc, Fext =
−B(x− (xint± d)) acts on liquid particles only to prevent
indefinite diffusion into the wall. a) Density distributions of
the liquid for a partially wetting wall and varying ks. The
temperature T is measured for ks = 3.0. b) Density profile
in the case of complete wetting, Asl =−40.00 and ks = 12.5.
Thick solid line: particle density distribution of the liquid
phase. Thick dashed line: density distribution within the
solid phase. Dotted line: sum of both densities. In both cases,
a) and b), the sl-interface is located at xint = 10.0.

structure resulting from particle positions at t0 (ks =∞),
and ii) a frozen, crystalline fcc (100)-surface of the same
density. In both cases the solid phase induces pronounced
density oscillations in the liquid. These seem already
significantly reduced in case i), but this mainly originates
from spatial averaging in the y- and z-direction. Thermal
roughening also results in a smooth density profile locally

due to dynamical averaging. The spring constant ks was
chosen as to render the net density profile flat, and to make
the width of the interfacial region as small as possible.
For partial wetting, ks can be given a relatively low value,
as the sl -interface already stabilizes due to a reduced
attraction between the particle species (Asl >−40).
Approaching complete wetting ks must be increased
accordingly, in order to stabilize the interface. Figure 1b)
shows the density profile for Asl =−40, where ks = 12.5
was found to yield a satisfactory profile stable at a width
of � 1.5rc. We note that the role of the soft external
potential Fext can also be replaced by a sufficiently dense
layer of “ghost” particles that interact only with particles
of the liquid. Together with this extra layer, the shape of
the initially chosen dividing line between liquid and solid
phase (here the plane at xint) may then be chosen to real-
ize more complicated surface geometries such as cavities.
Strictly speaking, a definite location of the sl -interface

(e.g. the initially chosen xint) is not unambiguously
defined any more (though the density profiles of the solid
and the liquid are rather symmetric at xint in all cases).
Under flow conditions, the slight inter-penetration of the
solid and the liquid phase (cf. fig. 1b)) will make the mass
flow jz(x) = vz(x)ρ(x) vary smoothly across the interface
(depending on its thickness and also on the wetting
conditions). However, one may now identify effective
interface positions (denoted as xint) not as a free para-
meter, but as the physically most appropriate choice that
in the following will be inferred from the simulation data
of Poiseuille- and Couette flow. In fig. 2a), the profiles
jz(x) of body-force driven slit flow are displayed, gener-
ated with a constant body force Fg = 0.02, for Asl =−40.0
and −35.0. In both cases the current density profile jz(x)
can well be fitted to a Poisseuille parabola in the range
|x|< 9.5rc, i.e. jz(x)�−1/2x2ρ2Fg/η+ jmax, where the
viscosity η= 7.41± 0.06 was determined in an indepen-
dent simulation following [21]. Only small deviations occur
in the interface region, see inset in fig. 2a). A detailed
view of jz(x) at the nominal interface xint = 10rc shows
that a slightly negative slip is present for Asl =−40.0. For
Asl =−35.0, we observe a positive slip. In the latter case
(partial wetting) the sl -interface is relatively sharp (cf.
fig. 1a)), and one may set xint � xint, if a well-defined posi-
tive slip length Ls with respect to xint exists. At complete
wetting, the interface and thus the diffusive width of the
solid phase becomes broader and effectively forces jz to
zero before reaching xint. This can be considered as a
displacement of the effective interface position inwards if
it is, e.g., independent of the shear rate. The displacement
then equals a well-defined negative slip length, and we
have xint = xint+Ls in this case, where Ls is a fraction of
rc. This interpretation is in fact sustained by considering
Asl-dependent slip lengths Ls determined from Couette
flow simulations (fig. 2b)). With sheared boundaries
moving at constant wall velocities ±vwall, we define Ls by
vz(xint)− vwall =Ls∂vz(x)/∂x, x= xint, where vz(xint)
is the extrapolation of the flow field vz(x) at xint. From
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Fig. 2: Behavior of boundary conditions. a) Profiles of current
densities for different wetting conditions. The inset shows a
magnification of the current density profile in the vicinity of
the interface; by extrapolating the fit to a parabola towards
xint, an effective slip velocity can be inferred (exemplified by
the thin dotted lines). b) Wetting-dependent slip lengths Ls
as functions of vwall. Error bars are of the order of symbol
thickness.

fig. 2b) one infers that except close to complete wetting
Ls > 0. The constancy of Ls with respect to vwall (i.e.
the shear rate) indicates that the sl -interface leads to a
Navier-type slip mechanism. Ls increases with Asl,
i.e., with increasing hydrophobicity of the solid. This
tendency is also found in MD simulations with Lennard-
Jones potentials [22]. We find that xint as defined above
is fully consistent with all contact angle measurements in
the following.
Along with the Couette flow simulations, we also verified

that the profiles of each temperature component (e.g.
kBTx = 〈v2x〉) across the interface is constant, which is to
be expected by the nature of the interface.
The static contact angle θ0 can actually be set in a

simple way by varying Asl. The range of θ0 goes from � 0◦
to almost 180◦, see fig. 3b). θ0 as a function of Asl can
be inferred from Young’s equation, γsv − γsl = γlvcos(θ0),
using the interfacial and surface tensions between the
phases, γsl, γsv and γlv. These have been determined by a
standard procedure for hetero-interfaces [18]. For instance,
γsl is obtained from γsl =

∫
[pxx− 1/2(pyy + pzz)−φ] dx,

where pij (i, j = x, y, z) denote the components of the

a)

z

x

b)

Fig. 3: Wetting behaviour. a) Setup for measuring static
(θ= θ0) and dynamic contact angles (θ= θd) as described in
the text. The values of the mass histogram (measured from the
upper piston level) are shown as black squares. The histogram
is fitted to a circle segment (black solid line), θ is measured with
respect to the plane at xint. b) The static contact angle as a
function of Asl. The error bars at the extreme values (θ0 = 0

◦

and θ0 = 180
◦) denote the maximum error resulting from a

diverging derivative in the error calculation. In the range from
Asl =−37.5 to Asl =−20.0 the error bars are in the order of
the symbol thickness.

pressure tensor with respect to the forces in eq. (1),
the integration is over a control volume containing the
interface. The pinning forces do not cause residual stress
as the particle configuration of the solid phase has been
relaxed beforehand. φ comprises all external forces acting
on the liquid [23], i.e. Fext in our case. By construction,
its contribution should be small, and is indeed found to
be < 5% in all cases. For the lv -interface, we have φ= 0
and a value of γlv = σ= 7.51± 0.04 for the surface tension
is recovered, in accord with [9].
The definition employing interfacial tensions is fully

consistent with a geometrical procedure to measure θ0
(see fig. 3a)): a liquid plug is placed in a slit, confined
in the x-direction and supported by an adhesive piston
in the z-direction, with periodic BC in the y-direction.
The fluid plug develops a symmetric meniscus whose shape
has been extracted by histogramming the amount of fluid
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a)

b)

Fig. 4: Contact angles. a) Meniscus profiles in the case of
complete wetting (Asl =−40.0) for Ca= 0.0 and 0.05. The
z-axis denotes the vertical position in the slit, the piston is
at z = 0. b) θ0 as a function of Ca. Data sets are fitted with the
model of Cox [24] (Asl =−35.0) and Eggers [25], respectively
(see text). Error bars are of the order of the symbol thickness.

contained in equally spaced slices in the x-direction. This
histogram is then fitted to a circle segment, and θ0 is taken
as the angle of inclination of the segment with the plane at
xint. Figure 2b) shows that within numerical errors both
methods to determine θ0(Asl) agree.
In a similar manner we can also infer a dynamic contact

angle θd emerging under forced wetting, which can be
emulated by moving the walls in fig. 3a) downwards at
a velocity v while keeping the piston fixed. In fig. 4a),
the meniscus shape evolving at v� 0.05 is compared
to the corresponding one at rest. The significance of
θd is that in a dynamical situation θd sets the actual
driving capillary pressure and thus influences fluid motion
globally. More generally, one considers θd as a function
of the capillary number Ca= ηv/σ, which measures the
opposing influences of viscous and capillary forces.
We note that in an analytical continuum treatment of

dynamic wetting, a relation θd(Ca) cannot be inferred
from a straightforward solution of the NSE assuming stick
boundary conditions, which would lead to a singularity
of the viscous stresses at the contact line (CL) [26].
To describe CL motion consistently, additional models
for the microscopic region where the meniscus meets
the solid boundary must be employed, leading to
effective continuum models [3,25]. One should stress
that, despite the coarse-grained character of the DPD

approach, such supplementary models are not required
here as a prerequisite. Any phenomenon of liquid flow
is ultimately determined by the fundamental particle
interactions and kinetics, i.e., a particular relation θ0(Ca)
is already implied with the model one provides for the
sl -interface. Artefacts such as the above-mentioned stress
singularity naturally do not arise. This is quite analogous
to atomistic modelling of sl -systems with MD. There, it
is often found that the generic behaviour of CL dynamics
can actually be understood in terms of an effective
continuum model, even for small systems [27], with a
cutoff length scale comparable to the molecular size. In
extracting θd by the procedure described for θ0 above, a
boundary layer of thickness ∼ 1rc has been excluded, as
within the small fluid wedge close to the CL we observe
significant deviations from a strictly spherical shape.
Qualitatively, we find this distortion accompanied by
excessively strong viscous stress that is suspended by
significant slip flow over a distance ∼ 1.5rc away from
the contact line. θd is thus to be considered an apparent
contact angle, and the situation is very similar to the
one considered in a global asymptotic analysis of the
moving CL problem, using continuum hydrodynamics.
There, a relation θ0(Ca) may contain various length scales
as parameters [24,25]. For instance, in the frequently
employed expression

θ3d− θ30 ∼= 9Ca ln(R/s), Ca→ 0, (2)

valid to leading order in Ca [24], R is an intermediate
macroscopic and s a microscopic length scale, which
specifies the length over which slip flow close to the CL
occurs.
Figure 4b) displays our numerical results for θd(Ca).

If we take 9 ln(R/s) as a compound fit parameter, the
simulation results are well described by eq. (2) at a slope
of 20.79± 0.3 for partial wetting. Varying s between 1rc
and 1.5rc results in R∼ 10rc–15rc < b, consistent with
the assumption that R should actually be smaller than
the linear size of the total system [25]. Within numerical
errors, the slope applies to all wetting conditions for large
Ca. For Asl =−40.0, however, we find a notable deviation
from the linear behaviour for small Ca. It has been pointed
out recently [25], that in the case of complete wetting the
microscopic length s itself depends on Ca, leading to a
modified relation of the form

θ3d
∼= 9Ca ln(αCaβ). (3)

β takes a value dependent on the microscopic mechanism
that removes the stress singularity at the CL. It should
equal 2/3 in the presence of thick prewetting layers and
long-range van der Waals forces and 1/3 in any other case.
Treating now α and β as two independent fit parameters,
we find α= 17.91± 1.45 and β = 0.39± 0.04. Due to the
short-range forces used in the DPD scheme a value of 1/3
is expected and indeed is very close to the fitted numerical
value.
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Discussion and conclusions. – In summary, we
have presented a new approach to model adhesive, solid
boundaries in the framework of many-body DPD. The
solid phase is represented as a “quenched” liquid and can
maintain a specified solid structure. As a certain thermal
roughness is retained, a slightly diffuse sl -interface results
which naturally avoids artefacts such as particle layering
or temperature oscillations, and establishes a smooth
density profile. Despite its diffuse nature, a wetting-
dependent location of a sl -interface can be identified,
showing weak slip flow with increasing hydrophobicity of
the wall. The behaviour of static contact angles is in accord
with Young’s law if all interfacial and surface tensions
are determined independently. The behaviour of dynamic
contact angles under constant forced wetting is not only
consistent with Cox’s hydrodynamic model [24], but also
resolves fine details of the relation θd(Ca) that are to be
expected for Ca→ 0 in case of complete wetting. To our
knowledge, this is the first time that this could be observed
in a particle-based simulation scheme.
We emphasize that except wettability, none of the prop-

erties of the sl -system created has been imposed. They
rather follow from the attempt to establish a seamless
transition of MDPD forces at the interface. This is in
marked contrast to other approaches where additional
mechanisms (e.g. particle reflection [14], averaging proce-
dures [13]) are employed to achieve a predefined bound-
ary condition (e.g. no slip). That the sl -interface of this
work performs quite well with respect to representing stan-
dard phenomena of static and dynamic wetting is inter-
esting and encouraging, as the force law used here is still
rather generic in character. It might in fact consciously
be used to represent more specific solid-liquid systems in
an explorative manner. To this end, the current model
describes wetting of simple fluids at smooth, low-energy
surfaces, and readily extends to chemically patterned
(i.e. the wetting conditions, by varying Asl spatially)
or geometrically textured ones. Thus, the simulation of
wetting/dewetting dynamics on micro-textured substrates
should be an immediate and important field of application
of the presented wall model.
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