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Abstract. We present a study on dynamic capillary wetting in the framework
of dissipative particle dynamics (DPD) based on a novel wall model for wetting
on solid boundaries. We consider capillary impregnation of a slit pore in two
situations: (i) forced (piston-driven) steady state flow and (ii) capillarity driven
imbibition out of a finite reservoir. The dynamic contact angle behavior under
condition (i) is consistent with the hydrodynamic theories of Cox under partial
wetting conditions and Eggers for complete wetting. The flow field near the
contact line shows a region of apparent slip flow which provides a natural way
of avoiding a stress singularity at the triple line. The dynamics of the capillary
imbibition, i.e. condition (ii), is consistently described by the Lucas–Washburn
equation augmented by expressions that account for inertia and the influence of
the dynamic contact angle.
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1. Introduction

Dynamic wetting phenomena such as spreading of droplets and thin films, or the impregnation
of capillary tubes and channels is of great importance in many areas of applied and engineering
science [1], microfluidics [2] or thin film lubrication [3]. Studying the temporal evolution of
dynamic capillary menisci involving moving liquid fronts by analytical or numerical methods,
however, is much more difficult than the static counterpart, where, e.g. the shape of a droplet at
rest is completely determined by the equilibrium (static) contact angleθ0. A moving liquid
front, however, will result in an (apparent) dynamic contact angleθd (θd 6= θ0), which is
phenomenologically a function of the local marching velocityv or, in dimensionless terms,
the capillary numberCa = ηv/σ (measuring the opposing influences of driving capillary and
damping viscous forces) [4]. The behavior ofθd(Ca) governs the global evolution of free
surface flows, and is thus also of great practical relevance. In industrial processes such as
curtain coatings it determines under which process parameters air entrainment will set in [5, 6].
Stating a general and complete relation ofθd(Ca) is by no means trivial, since details of
the microscopic three-phase coexistence region where the liquid meets a moving surface, the
‘contact line’ (CL), become crucial. This manifests itself in an unphysical stress singularity in
the solution of the Navier–Stokes-equations (NSE) by applying standard boundary conditions
(i.e. ‘stick’ at the solid–liquid (sl) interface, and zero stress at the free liquid surface) to this
problem [7, 8]. Various physical mechanisms have been suggested supplementing the continuum
description such as slip laws [4, 9], diffuse interface approaches [10], van der Waals forces [1],
chemical rate processes and diffusion kinetics [11, 12] or a combination of molecular kinetics
and hydrodynamic effects [5, 13, 14].

Experimentally,θd is sensed as the slope of the liquid front some small finite distance
away from the CL. Hence, a theoretical description must comprise a global solution for the flow
field, turning dynamic wetting into a complicated multi-scale problem [15, 16]. Hydrodynamic
theory can provide at most perturbation expansions inCa, and a global solution the NSE
is sought by rather involved asymptotic matching of the solutions on various length scales
[4, 9, 17–19]. At best, then, one can arrive at a useful relationθd = f (Ca, L1, L2, . . . ,

χ1, χ2, . . .) containing as arguments the relevant length scalesL and microscopic model
parametersχ [5]. But the problem seems more involved than that. As was pointed out
only recently [9], the length scales might themselves be functions ofCa. In addition, recent
experimental [5] and numerical works [6] on the curtain coating problem suggest that the flow
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field itself might influence the wetting dynamics rendering the dynamic contact angle problem
non-local.

Simulation methods such as molecular dynamics (MD) are in principle capable of
representing dynamic wetting problems as a whole, and have extensively been used in the
past to shed more light on the molecular processes close to the CL region [20]–[22]. Their
application to realistic problems is numerically, however, very costly and therefore limits the
size and timescale of the problems to be studied. On the other hand pure continuum methods
such as computational fluid dynamics (CFD) methods based on finite elements can conveniently
be used to solve the global flow problems in general. However, in the specific problem of free
surface flows there is no unique way of coupling the relevant molecular microscopic processes
to continuum fluid dynamics [6], [23]–[25].

In recent years novel simulation schemes such as the grid-based Lattice–Boltzmann
method (LBM) (see [26] and references therein), kinetic Monte Carlo approaches such as direct
simulation Monte Carlo (DSMC) [27, 28] or dissipative particle dynamics (DPD) [29, 30] have
emerged that offer alternatives to address the above mentioned problems. The DPD method was
originally invented to model the dynamics of solvents on mesoscopic time and length scales,
hydrodynamics is represented by the collision dynamics of an ensemble of pseudo-atoms. Fluid
properties but also flow boundary conditions arise as a consequence of the collision dynamics or
particle interactions. One may think of these methods as coarse-grained versions of an MD, that
still retain some molecular characteristics. Thus, when applied to dynamic wetting problems,
they are likely to provide some reasonable model for CL motion, such as Navier-slip [31].
But equally important, they are much more efficient than, e.g. MD in solving the global flow
problem. In the present work, we apply a multi-body-DPD (MDPD) approach to a nontrivial
transient problem of capillary dynamics, namely, the impregnation of a slit channel out of a finite
reservoir (section5). For representing the sl-system, we employ a recently developed model for
solid boundaries, which is reviewed in section3, and some important results on capillary flow
induced by a piston at constant capillary number, referred to as forced wetting are explained in
section4 in greater detail. In the following section, we outline the MDPD method used in this
work originally proposed by Warren [32].

2. A brief account of the scheme

DPD is a mesh-free particle based simulation method that was first devised by Hoogerbrugge
and Koelman [29] in 1992 as a generic method for modeling fluid dynamics. In the DPD-
scheme point particles interact via short range forces [29, 33] such that momentum and mass are
conserved, which is responsible for the hydrodynamic behavior of a liquid at large scales [34].
A common interpretation is that each particle is considered as a lump of molecules [34]. In this
picture the DPD method can be regarded as acoarse-grainingof MD and as such is capable of
modeling larger length and timescales.

The dynamics of the DPD particles is governed by Newton’s second law:Fi = mi r̈ i ,
where mi is the mass of the DPD particle. Particles interact via pairwise central forces
consisting of a random, dissipative and conservative part:Fi j = FR

i j + FD
i j + FC

i j . If r i denotes
the particle position, the conservative force in standard DPD reads:FC

i j = AwC(r i j )ei j , with
the repulsion parameterA> 0, r i j = r i − r j , r i j = |r i j | andei j = r i j /r i j . The weight function
wC(r )= (1− r/rc) vanishes for an inter-particle distancer i j larger than a cut-off radiusrc.
The random force reads:FR

i j = qwR(r i j )ξi j r i j , while the dissipative force damps the relative
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velocity normal to the connecting line between the particles,vi j · ei j = (vi − v j ) · ei j , which
leads to:FD

i j = −γwD(r i j )(vi j · ei j )ei j . The random and dissipative force act as a thermostat
if the amplitudesq of the random white noiseξi j and the dissipation constantγ satisfy
a fluctuation–dissipation theorem:q2

= 2γ kBT and wR(r )2 = wD(r ). The usual choice for
the weight functions iswR

= wC. In this contextkB is the Boltzmann constant andT is
the temperature determined by the DPD thermostat. The resulting forceFi on the particlei is the
sum of all interactions with the neighbors within the cut-off rangerc: Fi =

∑
i 6= j
(FR

i j + FD
i j + FC

i j ).

Over the past years several authors have investigated and refined this numerical scheme.
Español showed that the Navier–Stokes equations are correctly represented by the DPD-
method [35] and also showed how energy conservation can be incorporated if needed [36].
Marsh [37] used kinetic theory in order to relate macroscopic properties of the DPD-fluid to the
model parameters. As a recent development several groups [30, 32, 38] devised an extension
of the simple conservative force law in order to generate more complex equations of state
(EOS) showing a van der Waals loop. The latter is commonly realized by augmenting the
conservative forceFC

i j by a density-dependent contribution. This class of schemes is termed
MDPD. The density-dependent part can, e.g. be derived from a mean-field approximation to the
excess free energy [38]. In an analogous manner though technically different (eventually density
gradient terms must be evaluated), also LBM or DSMC can be extended to represent two-phase
fluids [27, 39].

In the approach of Warren [32] adapted in this work the density-dependent contribution is
rather introduced empirically, and has a different cut-off rangerd:

FC
i j = Ai jw

C(r i j )ei j + B(ρ̄ i + ρ̄ j )w
d(r i j )ei j (1)

with an additional weight functionwd(r )= 15/(2πr 3
d)(1− r/rd)

2. In contrast to standard DPD,
the density-independent force (with an interaction rangerc) is an attractive force, i.e.Ai j < 0,
while B> 0 applies for the density-dependent part, rendering it repulsive. The local density
ρ̄ i at the location of particlei is estimated by the instantaneously weighted averageρ̄ i =∑

i 6= j w
d(r i j ) [32]. Warren showed that this approach produces stable free capillary surfaces.

An appropriate choice of parameters results in sharply defined liquid–vapor (lv) interfaces that
can easily be kept track of in simulations. There are virtually no particles in the vapor phase,
which is thus effectively neglected. In the simulation, the numerical cost is only on the dense
phase. In this respect, the MDPD approach is easier to handle than, e.g. LBM as there extra
effort is required to deal with two-phase flows when the phases have significantly different
densities [26]; for a solution to represent an air/water-like interface with a density ratio of
1 : 1000, see [40]. In addition to the original scheme, we introduce a species-dependent force
constantAsl, defining the interaction between liquid (l) particles and those of the solid (s) wall
in order to establish adjustable adhesive properties of the sl-interaction. All relevant quantities
of the MDPD liquid (similar to those in [32]) are summarized in table1. As in many MD
schemes, in DPD dimensionless units are used, i.e. the thermal energyεT = kBT , the length
scalerc and the mass of the DPD particlesmi are all set to unity. Reference to dimensional
units can be made by defining the length scalerc, the mass of a DPD particle and the mean
thermal energyεT of a DPD particle. Different procedures for matching length and timescale
have been discussed [43]. One way of matching the length scale is to match the dimensionless
isothermal compressibilityκ = κT/κ

(0), which assures that relative density fluctuations within
the DPD-fluid are matched to the real liquid. Here,κT = −1/V(∂V/∂p)T is the isothermal
compressibility of the real fluid computed from the change of the volumeV under variation
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Table 1. Parameters used in the simulations. The surface tension has been
obtained in a planar geometry, by integrating the lateral part of the pressure
tensor in normal direction [41]. The viscosityη was obtained by a separate
simulation following [42]. We use a velocity Verlet algorithm for the numerical
integration of the MDPD equations using a time step1t = 0.01.

Parameter Symbol mu

Fluid particle density ρ 6.00
Interaction range (attr.) rc 1.0
Interaction range (rep.) rd 0.75
Amplitude of random noise q 6.00
Surface tension σ 7.51± 0.04
Viscosity η 7.47± 0.05
Attraction parameter Ass= All ≡ A −40.0
Repulsion parameter B 25.0

of the pressurep using isothermal conditions andκ (0) is the isothermal compressibility of an
ideal gas. An alternative way of matching the DPD-simulation to a real system is to calculate
the system specific dimensionless numbers, e.g. the Reynolds numberRe = ρvl/η and capillary
numberCa = ηv/σ and to generate the corresponding situation in the DPD-simulation. In this
work all results are given in model specific, i.e. DPD units, and are used for calculating the
dimensionless numbers wherever needed.

3. A model for solid boundaries with adjustable adhesive properties

Modeling sl-interfaces in mesoscopic simulation approaches is particularly difficult: even on a
molecular scale, the transition from a liquid to the solid is very sharp and abrupt. Naturally,
the true behavior of a sl-interface cannot be represented, but it is possible to capture selected
aspects phenomenologically. For instance, in LBM stick boundary conditions can be imposed
by the so-called ‘back reflection’ prescription [31]. The solid boundary is represented as
a mathematical plane, and particles crossing it are reflected by reversing their momentum.
This principle has also been adopted in DPD approaches [44], but care must be exercised in
order not to introduce numerical artefacts [45, 46]. Complications also arise if, in order to
represent wetting phenomena [41], also the boundaries are constructed from particle assemblies,
analogous to MD [47]. A dense impenetrable particle configuration may lead to spurious density
oscillations [48] or artificial slip [49].

An elegant and simple solution for flat interfaces has been presented by Merabia and
Pagonabarraga only recently [50]. They replace the solid by yet another liquid phase with
similar properties. For both phases, bounce-back conditions apply at the boundary plane so
that they remain separate. Otherwise, the inter-particle interaction is left unchanged even across
the boundary. This way, distortions in the fluid phase directly at the sl-interface are avoided.
With this system they investigated the spreading of droplets on solid boundaries, whereas they
did not investigate the behavior under forced wetting as considered in the next section of this
work.
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Figure 1. Density distribution for a mutual attraction strengthAsl = −40.0
within a slit of full width b = 20rc (only the right half of the slit is depicted). A
rigid wall with a fcc arrangement of particles (dotted dashed line) shows spurious
density oscillations. The ‘thermalized’ wall (solid line) clearly reduces density
oscillations and maintains a constant temperature at a preset value ofT = 1.

Similar in spirit, we have recently suggested a wall model that provides a smooth transition
from the liquid to the solid with respect to the forces specified in equation (1) [51]. The main
difference in our approach is that the solid is not defined by a mathematical description (e.g a
predefined plane), but instead consists of an ensemble of particles, which are pinned to the initial
position via a harmonic spring which largely enhances the possibility to create complicated
channel geometries or textured surfaces. For this to be achieved, we allow for a thin diffuse inter-
faces between both phases to develop, and we shall now briefly summarize the most important
aspects. The wall regions consist of an amorphous configuration of particles at the same density
as in the liquid. The particles are attached to fixed sites by harmonic forces, while the inter-
particle interaction is a ‘normal’ liquid–liquid interaction given by equation (1) (Ass= All =

−40.00). Thus, in our approach solid particles oscillate around the initial position over time
leading to thermal roughness. In order to prevent particles of the liquid phase from diffusing
into the wall indefinitely, an additional soft repulsive force normal to the wall surface is applied.
Since the solid phase is made of DPD particles of the same density as the liquid phase a smooth
transition from the liquid to the solid, see figure1, is established with constant density of the
dissipative particles in the liquid region. In contrast to a rigid wall, spurious density oscillations
as well as temperature oscillations near the wall can essentially be reduced. Figure1 illustrates
the difference between a rigid wall (with a (100)-fcc arrangement of the wall particles) and the
‘thermalized’ wall presented here. In summary, the wall model used here provides a numerically
simple scheme avoiding local distortions of liquid properties at the sl-interface.

Note that the only property imposed on the wall model is the affinity of the solid
surface, governed by the parameterAsl, which is larger thanAll and Ass (Asl> All , Asl> Ass).
Qualitatively this is similar to the methodology in LBM, where an attractive external potential
is used to tune the interfacial free energy in a van der Waals/mean field framework [52, 53].
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Figure 2. Scheme of the set-up used for determining the static contact angle. The
center of mass in each slab is determined separately and averaged over 1000 time
steps in order to determine the shape of the meniscus.

In a pure liquid, a valueAsl >−40.0 would lead to a separation into immiscible phases
(see also the work of Pagonabarraga and Frenkel on mixtures of non-ideal fluids [30] or Diaz-
Herreraet al [54], who also achieve a broad miscibility gap in a binary mixture of Lennard–
Jones fluids by varying the attractive part of the interaction). In the boundary model described
above the choice ofAsl thus assists in shaping the sl-interface accordingly. Interestingly, even at
large Asl, when the repulsive (i.e. hydrophobic) interaction dominates, still no particle layering
develops. This seems similar to the behavior of water close to hydrophobic surfaces, as studied
by Grigera [55], where also a very smooth transition from the bulk density to zero directly at
the interface is found. In that situation, it is believed that the depletion of liquid originates on
account of entropic reasons, due to a reorganization of hydrogen bonds [56]. It might be of some
interest to consider generic interface models as developed here in order to explore under which
other conditions layering/depletion may arise (see also the discussion in [32] on layering at a
free capillary surface).

There is a rather simple dependence of the static contact angle on the parameterAsl.
The set-up for extracting the static contact angle is illustrated in figure2. The meniscus was
segmented into 20 slices, and the center of mass was determined for each slab separately
in order to extract the shape of the meniscus and thus the static contact angleθ0. After
achieving stationary conditions the center of mass was averaged 10 000 time steps for each
slice separately in order to determine the static contact angle. Figure3 shows the static contact
angle as a function of the attraction parameterAsl. The wetting behavior of the wall can be
tuned arbitrarily between hydrophilic and hydrophobic by changing the mutual attractionAsl.
Furthermore, the resulting static contact angle is consistent with the expected value given by
Young’s law: θ0 = arccos((σsv − σsl)/σlv), with σsv, σsl, σlv being the interfacial tensions of
the solid–vapor (sv), sl- and lv-interface. The surface tensions were measured independently
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Figure 3. Comparison of Young’s law (circles) and the result of the MDPD-
simulation (squares). Vertical axis in degrees.

in a planar geometry, by integrating the lateral part of the pressure tensorp in normal, i.e.
z-direction, to the interface,σi j =

∫
(pzz−

1
2(pxx + pyy)−φ)dz, (σi j ∈ {σsl, σsv, σlv}) as

described in detail in [33]. φ as defined by Nijmeijeret al [47] accounts for the contribution of
an external potential. In our case this is the soft repulsive force preventing particles of the liquid
phase from diffusing into the wall over time. The contribution to the surface tension is less than
5% for all cases ofAsl. Within the numerical accuracy the two data sets agree implying that the
‘measured’ contact angleθ0 is in agreement with the thermodynamic prediction.

4. Behaviour of dynamic contact angles under forced flow in a thin slit

In the following, we demonstrate that the DPD scheme provides a global solution for the
moving CL-problem, which can be interpreted in terms of effective continuum theories [4]. For
investigating the dynamic contact angle behavior, we consider a situation of driven capillary
flow in a thin slit, similar to the experiments of Hoffman [57]. This is termed here as forced
wetting, as the liquid front is made to move with constant velocity across the solid without
changing shape, the velocity is determined by the piston. This facilitates experimental but
also the theoretical or numerical analysis, since one is essentially dealing with a stationary
situation, in contrast to many natural wetting phenomena such as droplet spreading, where the
time varying shape of the capillary meniscus must be taken into account.

For the channel system, we generate a stationary situation as illustrated in figure4(a). The
liquid is placed between two plates that are moved with a relative velocityvwall, while the plug
is kept fixed by a piston. In the reference frame of the liquid the walls move with velocity
−vwall relative to a piston that keeps the liquid in place.vwall determines the capillary number
Ca = ηvwall/σ . We may thus extract the shape of the meniscus by the procedure described above
for the static case, see figure2, and obtain a relationθd(Ca). Note that this procedure will in
general yield an apparent dynamic contact angleθd, as we do not measure the local inclination
of the meniscus with the boundary and the data points at the interface are not considered for the
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Streamfunction ψ(φ,r)

vwall

(b)

4 rc

Wall velocity

Slip velocity
at wall

Slip region

vwall= –0.05

Figure 4. (a) Schematic picture of the set-up used for studying forced wetting
in a capillary slit. (b) Shows the flow field resulting from the MDPD-simulation
for θ0 = 0◦ andCa = 0.05. This value corresponds to a dynamic contact angle
of θd = 50◦. (c) Shows the stream function solution according to Cox [4]. The
continuum model predicts pronounced convection (rolling) next to the CL in
agreement with experimental observations [8] and the numerical result obtained
from the MDPD-simulation.

spherical fit. This set-up is also suitable for extracting the flow field after sufficient averaging.
Figure4(b) illustrates the flow field resulting from the MDPD-simulation in the fixed reference
frame, i.e. the frame where the wall has a velocity−vwall. Along the solid surface we observe
significant slip over a distance of∼1.5rc.

The slip occurs in combination with pronounced caterpillar motion of the fluid, which
has been demonstrated in an experiment by Dussan [8]. Figure4(c) shows the streamlines as
obtained from solving the Navier–Stokes equations for an infinite fluid wedge, with constant
velocity at the free surface and a no-slip condition at the sl-interface:

ψ(φ, r )= r ((CAφ + DA) cos(φ)+ (EAφ + FA) sin(φ)), (2)

with the origin of the reference frame being the position of the CL. The coefficientsCA, DA,
EA andFA are given in [4]. Equation (2) leads to a logarithmic singularity of the viscous stress
asr → 0. In contrast figure4(b) shows that the DPD-method provides slip as a mechanism for
removing the stress singularity.

According to Cox [4] the singularity can be avoided by identifying at least two distinct
regions: (i) a region close to the CL, where slip predominates the flow and (ii) a no-slip region
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Figure 5. Comparison of the constitutive law for dynamic contact angles acc-
ording to Cox [4] (equation (4)) and the corresponding characteristics obtained
by the MDPD-simulations. Vertical axis in rad3.

(and (iii) sometimes an intermediate region is also needed). The asymptotic matching of the
different regions provides a solution for the constitutive law of the dynamic contact angle to the
leading order ofCa [4]:

g(θd)− g(θ0)= Ca ln(ε−1) (3)

with the ratioε = Lmicro/Lmacro independent ofCa and g(θ)=
∫ θ

0
x−sin(x) cos(x)

2 sin(x) dx. Lmicro is a
microscopic length scale over which a slip boundary condition is assumed to dominate the flow
field. Lmacro signifies a macroscopic length. By studying forced wetting of silicone oils in thin
glass tubes, Hoffman [57] found empirically a relationship that almost quantitatively agrees
with equation (3) and that complies with the Taylor expansion of equation (3) for small angles
(θd < 100◦) [9]:

θ3
d − θ3

0 = 9Ca ln(ε−1). (4)

In the case of partial wetting, see figure5, the data sets can well be fitted to equation (4).
If we take 9· ln(ε−1) as a compound fit parameter we find 9· ln(ε−1)= 20.8± 0.3.

In contrast, the case of complete wetting has a more complex characteristics, see figure6.
Although for Ca> 0.04 the slope attained is comparable to the case of partial wetting, a
significant deviation from the linear behavior occurs for smallCa. Eggers [9] pointed out
that in the case ofθ0 = 0◦ the microscopic lengthLmicro actually depends onCa. Eggers
showed that the solution of the lubrication equation yields an additional dependency such that
Lmicro = 0.54λCa−1/3, if slip is assumed as the mechanism responsible for removing the stress
singularity. In this contextλ is the Navier slip length such that,v− vwall = λ · (∂v/∂x), if v is
the fluid velocity at the wall andvwall is the velocity of the moving boundary. This leads to the
constitutive law forθ0 = 0◦:

θ3
d = 9Ca ln(αCa1/3), (5)
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Figure 6. Comparison of the constitutive law for dynamic contact angles
according to Eggers [9] (equation (5)) and the corresponding characteristics
obtained by the MDPD-simulations. For reference the model of Cox [4] is
depicted. Vertical axis in rad3.

whereα = Lmacro/(0.54λ). The additional weak logarithmic dependency only becomes relevant
for small Capillary numbers. We compare the constitutive law, i.e. equation (5), with the result
obtained by the MDPD-method. Figure6 shows that within the numerical accuracy the MDPD-
method reproduces the behavior given by equation (5) for θ0 = 0◦. The numerical value obtained
by the fit isα = (16.7± 0.3).

We should stress that all that really is required for the exponent of 1/3 to apply is
the absence of an extended precursor foot, present only for strongly wetting systems with a
large excess interfacial free energy. A numerical value of 1/3 is not strictly related to the
appearance of slip, but instead may originate from some other mechanism, that removes the
stress singularity. In this context the diffuse nature of the sl-interface (see also for use of
diffuse Cahn–Hillard interfaces [58]) has been pointed out as one possible mechanism to avoid
a stress singularity. Furthermore, it must be expected that along the slip region, especially at the
foremost liquid front, the interface needs some time to form, which yet would be a refinement
of a diffuse-interface mechanism. As a matter of fact, a possible interface relaxation plays a
major role in an elaborate continuum theory put forward by Shikhmurzaev [10, 59]. Exploring
the present boundary model along these lines further could be of considerable interest.

5. Dynamic capillary impregnation

Finally, we address the wetting behavior of a transient problem, the capillary impregnation of a
slit pore. The asymptotic limit (t 7→ ∞) of this problem can effectively be described by a one-
dimensional equation, the so-called Washburn equation [60], which describes the penetration
depthz over timet , i.e. z(t)∝

√
t . This behavior has been confirmed experimentally over a

wide range of time and length scales [60]–[62] down to the nano-scale. Also MD simulations
have shown that the characteristics can be described in the framework of a one-dimensional
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z

x

y
b = 20 rc

Figure 7. Set-up for capillary impregnation. The meniscus penetrates in the
z-direction due to the driving capillary pressure. Periodic boundary conditions
are applied in they-direction and in thex-direction. The shape of the meniscus
and the penetration depth is monitored by segmenting the pore into 20 slabs and
evaluating the center of mass in each slab separately as in figure2.

continuum description [63, 64] even for short time and length scales. We pursue this path by
studying a system as shown in figure7. We consider the case whereθ0 = 0◦, i.e. Asl = −40.0.
The asymptotic limit fort 7→ ∞ cannot directly be applied since inertial effects and the presence
of the dynamic contact angle, i.e.θd 6= θ0, alter the dynamics of the wetting process.

Before investigating the dynamics of the impregnation, the analytical solution of this
problem is derived by extending the Washburn law [60] in order to account for the dynamic
contact angle contribution and inertia. The dynamics of the capillary impregnation is governed
by balancing capillary forcesFcap, viscous forcesFη and inertial forces due to the momentum
change dp(t)/dt generated by the massM(t) which is moved in thez-direction during the
process of impregnation:

dp(t)

dt
= Fcap− Fη. (6)

Assuming that the energy is dissipated in the capillary equation (6) gives:

1

bh

dp(t)

dt
=

2σsl

b
cos(θd)−

12η

b2
zż, (7)

whereb denotes the slit width, see figure7, h denotes the width in they-direction (12rc) and
z is the penetration depth into the pore. Equation (7) corresponds to the Washburn law [60]
(adapted to a slit) if inertia is set to zero, i.e. dp(t)/dt = 0, and the dynamic contact angle
is replaced by the static contact angle, i.e.θd = θ0. This corresponds to the special case in
the asymptotic limitt 7→ ∞. The momentum change inz-direction can directly be expressed
in terms of the momentum of each particle, dp(t)/dt = d(

∑
mi żi )/dt . While the momentum

change of the massMslit in the slit can be calculated analytically by dpslit/dt = d(Mslitż(t))/dt =

d(ρbhz(t)ż(t))/dt , the momentum change in the reservoir is more difficult to determine (due to
the complex flow field) and therefore was measured during the course of the simulation and used
as input to equation (7). Also the dynamic contact angleθd was monitored during the simulation.
Figure8 shows the observed dynamic contact angle over time during the MDPD-simulation.
During the timescale studied here the resulting dynamic contact angle clearly exceeds the
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t

Figure 8. Dynamic contact angle behaviorθd obtained by the MDPD-simulation
versus time during the capillary filling process. Vertical axis in degrees.

Figure 9. Dynamics of the penetration into the pore over timez(t) obtained
by the MDPD-simulation compared to equation (7). The dynamic contact angle
is measured online during the simulation and inserted into equation (7) for the
numerical integration.

static contact angle (θ0 = 0◦). Over time the dynamic contact angle slowly decreases as the
penetration velocity into the slit decreases, see figure9. Interestingly, the inertial timescale [64]
τ =

√
ρb3/σ ≈ 80 roughly corresponds to the timescale needed for the meniscus to relax from

its initial configuration (starting conditions corresponds to the static contact angleθ0 = 0◦).
Since inertia has a considerable influence on the dynamics of the impregnation, the dynamic
contact angle is directly extracted from the simulation and inserted into equation (7) in order to
check if the MDPD-simulation can be consistently described by equation (7).
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Integrating equation (7) numerically with the data set of figure8 results in excellent
quantitative agreement with the MDPD-simulation, see figure9. As a reference in figure9 the
Washburn law [60] is shown, which clearly overestimates the penetration dynamics as inertia
and the reduction of the capillary pressure due to the dynamic contact angle are missing.

6. Summary and conclusions

We presented a study on capillary wetting under static as well as dynamic conditions in the
framework of DPD. The measured static contact angle is in agreement with Young’s law.
The characteristics of the dynamic contact angle was investigated under stationary conditions
and compared to the hydrodynamic models of Cox [4] and Eggers [9], respectively. The
dynamic contact angle is in agreement with the theoretical prediction of Eggers [9] for a
static contact angleθ0 = 0◦ with an additional logarithmic dependency onCa compared to
the model of Cox [4]. We find that for a static contact angleθ0 > 0◦ the microscopic length
Lmicro is independent of the capillary number in agreement with theory [1, 4, 9]. As a last step a
transient problem, the wetting into a slit was studied. The dynamics can be described by a simple
approach balancing capillary and viscous forces under consideration of inertia. This analytical
solution was compared to the result of the MDPD-simulation resulting in good quantitative
agreement. In summary, we have shown that the MDPD-method can successfully be applied
for studying dynamic stationary as well as transient capillary wetting phenomena. The MDPD-
approach therefore has the potential to become a valuable explorative tool as an alternative or
supplement to CFD or analytical approaches.
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