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Separation of ballistic and diffusive 
fluorescence photons in confocal 
Light-Sheet Microscopy of 
Arabidopsis roots
Tobias Meinert1, Olaf Tietz2, Klaus J. Palme2 & Alexander Rohrbach1,3

Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the 
illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams 
propagating through thousands of cells can be partly controlled holographically, the propagation of 
fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon 
loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate 
that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in 
each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical 
scattering parameters of the biological material. This allows to attenuate image contributions from 
diffusive photons and to amplify the relevant image contributions from ballistic photons through a 
depth dependent deconvolution. In consequence, image contrast and resolution are significantly 
increased and scattering artefacts are minimized especially for Bessel beams with confocal line 
detection.

A fundamental principle in light microscopy is to uncover the composition of matter by sending photons with 
defined properties onto a piece of matter and detecting the scattered photons. However, things can become very 
complicated when the investigated object is large and of complex biological structures and multiple light scat-
tering occurs. Photons that have been scattered too often lose their directional information, i.e. photons are no 
longer ballistic, but become diffusive. This loss of information does not only occur on the illumination side, but 
also on the detection side. When arriving on the camera, the origin of the photons is often unknown1. In conse-
quence, an image becomes blurred and noisy.

A suitable microscopical method to tackle the problem of light scattering in both the illumination and detec-
tion path is light-sheet based microscopy (LSM)2,3. Besides advantages such as high acquisition speed, effective 
sectioning, high contrast and low phototoxicity, this technique is also fascinating because it allows to observe how 
the illumination light propagates from the side through selected planes of the object. Furthermore, the influence 
of the detection depth can be observed quite well. In this way, the analysis of both scattered laser light and flu-
orescence light helps to better understand the formation of useful image data and unwanted imaging artifacts4.

Many technical improvements have been achieved in LSM within the last decade - on the detection side, but 
especially on the illumination side4–7. It turned out that scanning a beam8 through the focal plane results in a more 
homogeneous light-sheet4 than by forming a static light-sheet generated by a cylindrical lens, known as selective 
plane illumination microscopy (SPIM). Besides the illumination with a scanned Gaussian beam, scanned Bessel 
beams offer intriguing advantages such as high penetration depths into media due to their self-reconstruction 
capability5. In addition, Bessel beams can generate more imaging contrast and resolution, when combined with 
confocal line detection9, two-photon excitation10 structured illumination6,11 or using coherent superposition to 
form a lattice light-sheet12.

Especially the use of beam shaping elements such as spatial light modulators (SLMs) or digital micromirror 
devices (DMDs) allows to generate nearly arbitrary illumination beams, which, in the optimal case, can be adapted 
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specifically to the refractive index inhomogeneities of the object, which would otherwise lead to unwanted 
beam deflections and distortions13. This holographic shaping of the illumination beam requires coherent light, 
which is characterized by its unique phase dependency between all photons incident onto the object. However,  
fluorescence light emitted from the fluorophores inside the extended object lack this mutual phase dependency, 
since the emission of fluorophores is incoherent. Wavefront correction approaches on the detection side can 
help to improve the image quality14,15, but the significant computational efforts and several illumination itera-
tions per image plane set strong limitations concerning the acquisition speed and hamper imaging of dynamic 
processes. Popular methods to improve the image quality by post-processing such as image deconvolution16–18  
often remain unsatisfying because the point-spread function (PSF) at the camera is different for each position  
inside the 3D object, which is because fluorescence photons are scattered differently at each position. Nevertheless, 
post-processive deconvolution does not affect imaging speed.

The influence of scattering becomes apparent in an illustrative way when imaging large, scattering struc-
tures such as small plants and plant root tips, that consist of regularly shaped cells of variable sizes19, but reveal 
high refractive indices (high polarizabilities) leading to strong deviations of the illumination and detection 
photons. These effects degrade the image quality of those parts of the plant which are further away from the 
illumination lens and the detection lens. For example the small and dense pericycle cells within Arabidopsis 
roots appear blurry19. Lateral root initiation originates from the pericycle. Hormone gradients, which are estab-
lished by polarity in the cell’s localized transport proteins of the PIN family, play a crucial role in this process20. 
Detailed real-time analysis of PIN proteins could not be performed so far because of limited sub cellular resolu-
tion and contrast. Although illumination from 4–5 sides helps to improve the image quality in the back parts of 
the object, this comes at the cost of a 4–5 -fold increase in illumination time and bleaching in addition to intensive 
postprocessing2.

Image formation in scattering media has been described by wave-optical models21,22 and investigated via Monte 
Carlo simulations23. An effective PSF has been introduced24,25 that allows image estimation25 and deconvolution26,27  
under different scattering conditions. Image formation in scattering samples can be better understood by quan-
tifying the amount of scattering events a photon has survived and considering this in specific PSFs28. However, a 
practical procedure to separate diffusive fluorescent photons or an analytical model describing their influence on 
the imaging process is still missing.

In this paper we introduce such a procedure and model. Based on the theoretical description of photon dif-
fusion, we present a method that allows to separate efficiently the parts of the image resulting from the mini-
mally scattered (ballistic) photons and the highly scattered (diffusive) photons. This information can be directly 
extracted from the image spectra such that no a priori knowledge about the object is required. We demonstrate 
the principle of separating weakly and strongly scattered fluorescence photons using identical Arabidopsis 
Thaliana roots, which we image in four different illumination and detection modes. We have developed a concept 
that quantifies the change of ballistic photons into diffusive photons, which varies with the detection depth and 
which is implemented in a depth dependent deconvolution of the 3-D images.

The Conceptual Approach. In this study we investigate the influence of three important components of the 
imaging chain - the illumination beam, the detection method and the image postprocessing - on the 3D image 
quality. Further, this chain is studied in four different imaging modes. All variations of these components are per-
formed at exactly the same biological object, an Arabidopsis thaliana root, to enable a meaningful comparison of 
the imaging modes. The roots are about 120 μ m in diameter and scatter strongly both the illumination light and 
the fluorescent detection light, leading to reduced contrast and resolution, but also to local image artifacts in the 
back parts of the object.

As the first component of the imaging chain, we use a spatial light modulator (SLM) that can switch plane wise 
the shape of the illumination beam, which is either a Bessel beam or a Gaussian beam optimized to the extent of 
the object. The beam is scanned laterally in the plane of focus (see Scheme of Fig. 1). As the second component, 
we use a camera with a rolling shutter, which enables confocal line detection9,29 by a narrow width of the slit 
moving parallel to the illumination beam (see Fig. 1) or conventional widefield detection for a large slit width.

The third component in the imaging chain is a deconvolution based on our model describing the photon diffu-
sion in image formation. The required scattering parameters can be extracted by analyzing the width of the image 
spectra, which decrease with the detection depth and thereby represent the increase of image blur. We will show 
that enhancing high frequency components by deconvolution enhances those image components, which mainly 
originate from ballistic photons. This way, the object and depth dependent deconvolution can be interpreted as 
post-processive photon separation.

Results
3D imaging of root tips. Arabidopsis thaliana root tip is the preferred model for root development in plants 
due to its small size and simplicity. With conventional light-sheet microscopy only outer, but not inner cell layers 
were accessible for microscopic analysis with reasonable resolution19.

Here, we imaged Arabidopsis thaliana roots expressing the plasma membrane located protein LTi6b fused to 
GFP homogenously in all cells30. Seeds of 35s::LTi6b-eGFP) were germinated for 7 days on solid medium in the 
light. Excised roots were embedded in 1.5% low-melting agarose.

It is well known that Gaussian and Bessel beams exhibit different scattering properties in inhomogeneous 
media and thereby generate different light-sheets and images of different quality in LSM. The usage of a spatial 
light modulator (SLM) in the illumination path allows to shape nearly arbitrary illumination beams, which will 
then be scanned laterally across the object as indicated in Fig. 1. This offers the opportunity to directly compare 
the images acquired by using e.g. Gaussian or Bessel beam illumination31.
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The concentric ring system around the thin main lobe of a Bessel beam enables the superior propagation 
stability and the self-reconstruction capability of the beam. However, it is also the ring system that generates the 
low image contrast because it excites fluorescence also out of the focal plane. This problem can be well solved by 
using a confocal line detection scheme, which mainly detects the fluorescence generated by the thin main lobe 
of the Bessel beam and generates unreached contrast and resolution9. Synchronizing the light-sheet mode of the 
camera (ORCA-Flash4.0, Hamamatsu) with the scanned illumination beam allows confocal line detection at high 
framerates29 and excellent sectioning. In this way 3D image stacks including image aberrations can be obtained 
with high sampling also in a plane vertical to the light-sheet revealing so far unknown imaging peculiarities on a 
sub-micron scale.

In total four 3D image stacks each consisting of 260 planes separated by Δ y =  0.5 μ m were recorded from a 
single root tip. To allow a fair and precise comparison without bleaching or drift effects, each plane was imaged 
successively with the above mentioned four different imaging modes. Both the Gaussian (axial full width 
at half maximum (FWHM) Δ z =  300 μ m) and the Bessel beam (axial FWHM Δ z =  300 μ m; numerical aper-
ture NA =  0.15) illumination have been used to image in conventional widefield mode (detection slit width 
dslit =  MT · 50 μ m) and in confocal line detection mode (detection slit width dslit =  8 · 6.5 μ m =  MT · 1.3 μ m corre-
sponding to 8 pixels on the camera, at magnification MT =  40). Figure 2a,b show image slices of an Arabidopsis 
root tip parallel to the light-sheet with Gaussian and Bessel illumination and conventional detection. Whereas the 
Gaussian beam reveals the better image contrast, the Bessel beam image hardly shows artifacts caused by scatter-
ing of the illumination light as visible with the Gaussian beam marked with a white arrow. In the top right corner 
the Fourier transforms of the images are displayed (in the spatial frequency coordinates kx and ky) revealing a 
broader image spectrum (better transfer of high frequencies) for the conventional Gaussian beam.

The combination with confocal line detection results in a distinct contrast improvement for both the Gaussian 
beam and the Bessel beam as can be seen in Fig. 2c,d and also in the broadened image spectra. Although the 
image contrast is still better with the Gaussian beam, the scattering artifacts in the image become more pro-
nounced especially in the back part of the image, since the Gaussian beams are stronger deflected and scattered 
than the Bessel beams9 and thereby do not propagate straight along the detection slit of the camera. In conse-
quence, significantly less ballistic photons are collected and the image reveals dark stripes. On the other side the 
image obtained with Bessel beam illumination combined with confocal line detection reveals a good contrast with 
much less artifacts since fluorescence from the ring system is efficiently blocked.

For a complete comparison of the beam propagation and imaging properties of all four imaging modes image 
slices perpendicular to the light-sheet have to be inspected. Figure 2e–h show examples of such yz-slices giving 
emphasis to three regions of interest (ROI). Again stripe-like artefacts are visible using Gaussian illumination 
(ROI2). However, at closer look areas with horizontal structures (ROI1 & ROI3) reveal additional significant 
artefacts in the case of Gaussian illumination. The bright, mostly regular structures in the images indicate fluo-
rescently labeled cell membranes being hit by illumination photons. However, missing horizontal connections 
between cells point out that illumination photons from the Gaussian beams do not reach several horizontally 
oriented membranes because of strong scattering of the laser light. Because of the conical propagation direction 

Figure 1. Sketch of the microscope. A spatial light modulator (SLM) in the illumination path allows switching 
between Gaussian and Bessel beam illumination for comparative measurements. Confocal line detection is 
possible through a synchronized movement of the illumination beam with the rolling slit of the camera, thereby 
increasing image contrast and resolution. DO: detection objective, IO: illumination objective. Inset: Scheme for 
the emission of ballistic and diffusive photons in light-sheet microscopy.
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of the photons in the Bessel beam, also structures parallel to the light-sheet are imaged with good contrast  
(see also Supplementary Text 1).

Depth dependent image contrast. It was shown by the yz-slices of Fig. 2 that for all imaging modes a 
strong decrease in image contrast is going along with an increasing detection depth (y-axis). One method to pro-
vide a quantitative measure of contrast is the “useful contrast” introduced by Truong et al.32. A similar procedure 
is applied in our study and is further described in the methods section. This approach determines the contrast 
coefficient Q, which quantifies the ratio of the high spatial frequency image components (HSF, k⊥ >  kc) and the 
low spatial frequency image components (LSF, k⊥ ≤  kc) (see eq. (11)). The corner-frequency kc =  2π /dcell used 
for the spatial filtering is defined by the largest object structure, which is the longer cell length of dcell ≈  20 μ m  
(see inset of Fig. 3b).

Therefore, a high value of Q refers to high contrast in an xz-image slice. The contrast coefficient is plotted in 
Fig. 3a for all imaging modes over the detection depth y0 (y0 is defined in Fig. 2f). As expected, a strong decrease 
in contrast is visible with increasing detection depth. The drop in contrast Q caused by a few 10 micrometers 
propagation through the object is even stronger than the contrast difference caused by the imaging mode. This 
effect points out that the compensation for the detection depth induced loss in contrast is of great importance and 
might be differently effective for each imaging mode.

For a quantitative comparison of the different imaging modes, the contrast is normalized by the contrast coef-
ficient of the standard imaging mode (Gaussian illumination and conventional detection). The result is plotted 
in Fig. 3b. It is obvious that confocal line detection improves the contrast. At low detection depth (y0 =  10 μ m) 
the contrast is improved roughly by 70% for Bessel illumination (compare the bright and dark blue lines) and by 
30% for Gaussian illumination (the red line above the green line). The contrast improvement is further enhanced 
for higher detection depths. For e.g. y0 =  100 μ m the contrast coefficient is improved by more than 150% for both 
illumination modes. For higher detection depth the amount of diffusive photons involved in the image formation 
increases and image quality drops down. Since diffusive photons are multiply scattered on the way to the detector 
and thus are displaced in the image plane, they have a higher probability to be blocked by the confocal slit. This 
effect leads to the enhanced contrast improvement by confocal detection for higher detection depths.

Figure 2. Image cross-sections from Arabidopsis root tip using 4 different imaging modes. (a–d) Slices 
through images of Arabidopsis root along illumination(z)- and scanning(x)-direction. Image contrast is clearly 
enhanced by confocal detection for both Gaussian and Bessel beam illumination. Whereas the Bessel beam can 
self-reconstruct in inhomogeneous media, the Gaussian beam cannot and generates stripe artefacts. However 
the Gaussian beam reveals the best contrast, also revealed by the image spectra in the upper right corner of each 
image. (e–h) Image slices along the illumination(z)- and detection(y)-direction. Beside the stripe like artefacts 
(ROI 2), Gaussian illumination shows aberrations at certain structures, such that horizontal cell membranes 
disappear completely (ROI1 and 3). This indicates strong scattering of a Gaussian illumination beam while 
propagating in the cell membrane.
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Since the slit is parallel to the z-axis, only photons displaced in x-direction are blocked thereby increasing 
optical resolution along x. This effect is shown in Fig. 3c, where the 1/e width of the spectra in all directions of the 
kxkz-plane are plotted relative to the spectrum obtained by the standard imaging mode (see the green circle as a 
reference). The elongation of the confocal image spectra in kx-direction demonstrates that the improved contrast 
enhancement at high detection depths is caused by the confocal slit, which works in in x-, but not in z-direction. 
A detailed discussion on the effect of confocal detection with special attention on the difference between Bessel 
and Gaussian illumination can be found in Supplementary Text 2.

Image formation with ballistic and diffusive photons. The image is formed by ballistic (hardly 
scattered) and diffusive (multiply scattered) photons. Due to the fact that diffusive photons carry only little 
high-frequency information about the object, the image quality decreases if the amount of diffusive photons 
involved in the imaging process increases. Consequently, the image quality is increased if the percentage of bal-
listic photons is enhanced. This process is called gating33,34. Confocal detection is a first step in this direction 
since the detection slit blocks photons, which are displaced by multiple scattering. A more advanced method 
is separating ballistic and diffusive photons by their time of flight35,36 but technical complexity has prevented a 
combination with LSM. However, an alternative, which needs no further hardware, is separating the effect of the 
ballistic and diffusive photons on the image in a post processing step. The defined suppression of low-frequency 
information from the diffusive photons and the defined enhancement of high-frequency information from the 
ballistic photons is nothing else than a deconvolution with a PSF describing both the optical response and the 
detection depth dependent object response.

Figure 3. Depth dependent image contrast for different illumination and detection modes. (a) Quantitative 
comparison of image contrast by the contrast coefficient Q(y0). The contrast decays nearly exponentially 
for increasing detection depth y0. The 3 insets show image spectra at different detection depths for Bessel 
illumination and confocal detection. The spectra become narrower for higher detection depths. (b) The 
contrast coefficient is normalized to that of the standard Gaussian illumination with conventional detection. 
An enhanced contrast improvement by confocal detection is observed for high detection depths. The first inset 
illustrates the separation of useful high spatial frequency (HSF) information and low spatial frequency (LSF) 
background in Fourier space. The ratio of the mean value of the HSF and LSF components in Fourier domain 
gives the contrast coefficient. The second inset shows the relevant coordinate definitions in Fourier space.  
(c) Width of image spectra from 2D slices at different detection depths normalized to the Gaussian illumination 
with conventional detection. The 1/e width in all directions is obtained by exponential fitting in all directions. 
The elliptical shape of the confocal spectra for high detection depths indicates the contrast improvement 
perpendicular to the detection slit (x-direction).
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A diffusive photon differs from a ballistic photon by its propagation angle θ . Any angular change during the 
propagation of a fluorescence photon on its way to the detector will result in a wrong position on the camera and 
to a wrong image contribution. The image is described by = ∗ ⋅ ∗p y f h h h yr r r r r( , ) ( ) ( ( ) ( ( ) ( , )))0 ill det obj 0 , 
where hill(r) and hdet(r) are the purely optical response functions for light-sheet illumination and detection. 
(Further explanation of the mathematical description of the image process can be found in the methods section 
and in Supplementary Text 6) The contribution from both the ballistic and diffusive photons is defined by the 
scattering properties of the object f(r) and can be accounted for quantitatively by an object response function 
hobj(r, y0), which consists of two parts. One part for diffusive photons, which is nearly of Gaussian shape and 
broadens with the detection depth y0 and one part describing the ballistic photons by a delta-point function. This 
is explained in detail in the methods section. The degree of the linearly increasing influence of the object, i.e. the 
broadening of hobj(r, y0) is expressed by the scattering parameter γ, which is a material constant specific for the 
object. The corresponding object transfer function Hobj(kr, y0), i.e. the Fourier transform of the response function, 
describes the signal loss for each spatial frequency kr. It consists of a Gaussian like part for the diffusive photons 
that narrows with y0 and a constant offset for the ballistic photons that drops off exponentially with y0:
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The shape and behavior of the object transfer function Hobj(k⊥, y0) in lateral direction is shown in Fig. 4a for 
three different detection depths y0. The experimental data is obtained through angular averaging of the normal-
ized image spectra. Figure 4b,c illustrate photon propagation through the object, where a small fraction c0 of 
the fluorescent photons leaves the object unscattered, and fractions cj are scattered j times. The parameter μsca 

Figure 4. Photon diffusion through scattering object and its effect on the frequency transfer. (a) Averaged 
object transfer function Hobj(k⊥, y0) for three different detection depths y0. Photon scattering leads to a 
suppression of higher spatial frequencies for larger y0. Hobj(k⊥, y0) is composed of a Gaussian like function 
representing the frequency filter for scattered photons and a constant part given by the fraction of ballistic 
photons. Model based fitting to the processed image data enables the extraction of scattering parameters.  
(b) Scheme for photon diffusion through the object. While some photons leave the object unscattered (fraction 
c0), others undergo n scattering events (fraction cn). Each scattering event results in a random change of the 
propagation direction θ. Since the propagation angle changes in a layer (y01–y06) out of the focal plane, the origin 
of emission appears to be displaced by Δr in the image thus leading to blurring images. In a first approximation 
the effect increases linear with the defocus y’. (c) Subdivision of photons into photon fractions of different 
scattering order for different detection depths y0. (d) The probability to change the propagation direction by θ is 
assumed to follow a Gaussian distribution p(θ), which is characterized by the material parameter γ .
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describes the probability that a photon is scattered. Each scattering event results in a random change of the prop-
agation direction θ . The probability for a directional change follows a Gaussian distribution p(θ ), characterized by 
the material parameter γ (see Fig. 4d). In detail explanation of eq. (1) can be found in the method section.

Depth dependent frequency transfer. The image spectra shown as insets in Fig. 3a for y0 =  10 μ m,  
55 μ m and 100 μ m reveal that the spectral widths (xz-slices) decrease for higher detection depths. This means that 
a reduced amount of high frequency information is transferred through the scattering sample. To extract this loss 
in high frequencies caused by the object, the spectra must be normalized by a reference spectrum at the bottom 
of the object (see eq. (12)), where the influence of the object is assumed to be negligibly small. Division by this 
reference spectrum eliminates the effect of the microscope and the frequency spectrum of the object. Hereby we 
assume that the object frequencies do not change significantly with the detection depth. Deviations from this 
assumption are elaborated in the discussion. The obtained frequency transfer is plotted as scattered markers for 
three different detection depths (y0 =  10 μ m, 30 μ m and 50 μ m in Fig. 4b). The data has been extracted from the 
3D image data captured with Gaussian illumination and conventional detection. The frequency transfer is inde-
pendent on the direction and can be plotted over the radial spatial frequency = +⊥k k kx z

2 2 . As expected from 
theory (see method section), the frequency transfer consists of a Gaussian like part centered around k⊥ =  0 
describing the diffusive photons and a constant frequency transfer. Since ballistic photons are not affected by the 
object, their spatial frequencies do not change, which results in a constant frequency transfer function. The width 
of the Gaussian part reduces with increasing detection depth y0 and the constant level drops exponentially with y0 
as expected from Lambert-Beer’s law.

Extracting the object transfer function allows to compensate for the reduced high frequency transfer through 
the object by applying a deconvolution according to our model for an effective system PSF. Therefore, the scatter-
ing parameters μsca and γ which describe the scattering behavior averaged over the 3D image have to be known. 
If no such parameters are available for example for heterogeneous materials like Arabidopsis roots the parameters 
can be extracted from the images. This procedure is described in the methods part and in Supplementary Text 3.  
By fitting Hobj(k⊥, y0) to the frequency transfer data, we found μsca =  50 mm−1 and γ =  22.4. The model-fitted 
curve is plotted in Fig. 4a with solid lines. Supplementary Movie 1 shows the fitting result over the whole range 
of the detection depth. As mentioned above, the frequency transfer has been calculated for the conventional 
detection mode since it is independent of the direction in the kxkz-plane. This is different for confocal detection. 
Nevertheless, it is possible to extract the scattering parameters by only considering the frequency transfer in 
kz-direction (See Supplementary Text 3 for more details).

Depth dependent deconvolution. With knowledge of the scattering parameters μsca and γ, a depth 
dependent deconvolution is possible. Here, we used a Wiener filter (see methods section) instead of more 
advanced deconvolution algorithms, to make the effect of photon separation better visible. The deconvolution 
intensifies the influence of ballistic photons on the imaging process at high detection depths, such that it can be 
classified as a gating technique.

Figure 5a–d show how contrast of xz-slices is increased by a depth-dependent deconvolution. It displays how 
the enhancement of high frequencies is adapted to the blur which increases with the detection depth. Figure 5e–h 
show yz-slices through 3D stacks, which have been processed by a depth-dependent deconvolution. 12 different 
y0-position and 12 different PSFs (see methods section) have been used. The images reveal a strong increase of 
contrast compared to the unprocessed images displayed in Fig. 2e–h.

Some overshooting is visible in the left side of Fig. 5h. This is due to the fact that the round shape of the 
root is not considered and the effective detection depth in the area, where overshooting appears, is shorter than 
expected. Additional scattering of the illumination light, which is not considered, leads to a widening of the illu-
mination beam from left to right, causing a gradient of image quality. Compensating for the scattering of illumi-
nation light needs a separate discussion, because of the coherent nature of the illumination beam.

Discussion
3D imaging of root tips with and without confocal detection. The advantages of confocal line 
detection using a camera with a moving slit (rolling shutter) become clearly visible in Fig. 2. The image con-
trast improves, the lateral image spectra become broader (see insets) and especially the resolution in detection 
direction is improved (Fig. 2g,h). However, this comes at the cost of stronger stripe artifacts for Gaussian beam 
illumination, which do not exhibit the directional stability of Bessel beams. Gaussian beams are deflected during 
propagation and after some distance do not propagate parallel to the detection slit. In addition, it becomes appar-
ent by the yz-slices of Fig. 2 that Gaussian beams cannot illuminate entirely the cell membranes oriented parallel 
to their propagation direction. However, this effect is not further investigated here. Bessel beams on the other side 
provide good contrast over the extent of the 100 μ m thick root without producing any significant artifacts, which 
is the consequence of their propagation stability and their self-reconstruction capability.

A recent study using structured light-sheet illumination reveals a strong image darkening in the central part 
of the root tips, since the illumination modulation frequency, does not match the PSF broadening. In our study, 
however, the small central cells can be reasonably resolved19. In structured illumination, the frequency of the 
illumination pattern has to be adapted to the PSF width and thereby also to the detection depth in order to exploit 
its full power, which would be possible with our model.

The gating effect of a confocal slit, i.e. the blocking of diffusive photons, has been analyzed also theoretically. 
It was shown by Supplementary Figs 3 and 4 that contrast improvement by confocal detection using Gaussian 
illumination is mainly caused by blocking diffusive photons, but not by blocking fluorescence excited out of the 
focal plane. In other words, confocal detection in weakly scattering media with Gaussian illumination has almost 



www.nature.com/scientificreports/

8Scientific RepoRts | 6:30378 | DOI: 10.1038/srep30378

no effect. In contrast Bessel illumination with confocal line detection benefits from the true confocal effect and 
gating further improves contrast.

Separating fluorescence photons in the image. Ideal, diffraction limited imaging is only possible by 
ballistic photons, which transfer information from the focal plane inside the object to the detector. Since the num-
ber of ballistic photons at the detector decreases exponentially with the detection depth y0, the useful image signal 
decays in the same way. The image background, defined by the diffusive photons, will increase exponentially with 
the detection depth. The separation between ballistic and diffusive photons, i.e. a strong enhancement in contrast, 
is possible, as long as the amount of ballistic photons is distinguishable from the noise level.

To extract the frequency transfer through the object each image spectrum at y0 is divided by the image spec-
trum at y0 ≈  0, which is mainly defined by the imaging optics. In principle, the normalized spectrum can be 
obtained experimentally without the fit functions derived in our model. However, the fit functions provide an 
additional control and deliver the material parameters μsca and γ.

Figure 4 summarizes the change of the object transfer function for different detection depths y0. Both the 
experimentally and theoretically obtained Hobj(kr, y0) reveal a quite good coincidence in shape and thereby 
demonstrate the ongoing transfer of ballistic photons to diffusive photons with increasing y0. Deviations between 

Figure 5. Image cross-sections of a 90 μm thick Arabidopsis root tip with confocal detection without 
and with depth dependent 3D deconvolution. (a–d) xz-slices comparing the effect of a depth dependent 
deconvolution for two illumination modes at a detection depths of y0 =  40 μ m and 80 μ m. (e–h) yz-slices 
of depth adapted deconvolved images with different illumination and detection modes. A strong contrast 
enhancement is evident relative to Fig. 2. Further aberrations in horizontal structures become visible for 
Gaussian illumination. The x-position of the yz-slices are marked by red arrows in (a–d).
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the measurement data and fit curves can be first a consequence of the inhomogeneous scattering properties of the 
root tip and second, the characteristic structure size and thus the object spectrum changes with detection depth, 
such that the effect of the object spectrum cannot be completely eliminated by scaling with a reference spectrum. 
For example, cells in the middle of the root (Endodermis, Pericycle and Stele) have a size of 5 to 7 μ m and are 
smaller than the cells in the two outer cell layers of the root (Epidermis and Protoxylem), which measure 10 to 
20 μ m. Since the reference spectrum was obtained from an outer cell layer, frequencies from 0.05 to 0.1 μ m−1  
are more pronounced than in a layer at 50 μ m detection depth (green curve in Fig. 2b)). Thus, in the normalized 
spectrum at y0 =  50 μ m frequencies from 0.05 to 0.1 μ m−1 are reduced and frequencies from 0.14 to 0.2 μ m−1 
occur amplified. The fitting algorithm turned out to be robust against these deviations. In practice, there are sev-
eral objects offering depth independent object spectra (e.g. Zebrafish with labeled nuclei) and thus are even more 
suitable for the presented method. Nevertheless, by imaging membrane labeled root tips, we demonstrate that the 
method is not limited to such samples.

Depth dependent deconvolution. Deconvolution with a single response function generates images with 
either too little or too much contrast (effect of overshooting) depending on the choice of the PSF. However, by 
adapting the object PSF to the corresponding detection depth, resolution and contrast in the image can be opti-
mized over the complete 3D volume. For illustration of this effect, see Supplementary Text 4. The depth depend-
ent deconvolution algorithm was tested successfully also at a dense bead cluster. Results are shown and discussed 
in Supplementary Text 5.

Our results prove that scattering of fluorescent light can be well approximated by a PSF even for inhomo-
geneous samples like Arabidopsis roots. In comparison to other deconvolution techniques, which utilize point 
like structures in the object to extract the PSFs37 our technique can be applied to any structure without insert-
ing beads. Recently developed blind deconvolution algorithms are based on a depth-variant PSF model38. Here, 
spherical aberrations from refractive index steps between immersion medium and sample were considered mul-
tiple scattering a main source for image degradation is neglected.

A perfect depth-dependent deconvolution would require a complete 3D deconvolution for all N xz-planes. 
A solution with less computational effort is described in the methods part, where twelve 3D deconvolutions for 
the whole stack have been performed. However, it is not necessary to compute twelve 3D deconvolutions for the 
whole stack, since only a limited number of planes around the specific plane at y0 is of interest. A further reduc-
tion of computational efforts is possible, if each of the twelve 3D deconvolution is performed on a section, which 
is six times thinner than the whole stack. In the end, the computational effort will increase only by a factor of two 
relative to a standard 3D deconvolution with a single PSF.

Furthermore, all image processing operations can be outsourced directly to camera systems exploiting fast and 
flexible power of GPUs or FPGAs.

By the strong increase in contrast it becomes apparent that Bessel illumination with confocal detection bene-
fits most from the deconvolution and leads to a nearly artefact-free image. The already mentioned artefacts caused 
by Gaussian illumination are even more obvious after deconvolution. Only without deconvolution, one may argue 
whether the high contrast achieved by Gaussian illumination or the elimination of artefacts by Bessel illumination 
leads to the best image quality. In general, this question has to be answered individually for each application. After 
deconvolution the best image quality is clearly achieved by Bessel illumination.

Extracting scattering parameters out of the image. It was shown in Fig. 4a that the model-based 
transfer function µ γ⊥H k y( , , , )obj 0 sca  introduced in eq. (1) fits reasonably well to the frequency transfer extracted 
from the experimental data. The decrease of the offset level allowed to extract μsca, whereas the decrease in 
Gaussian widths allowed to extract γ. We tested the universality of our approach by using the two different illu-
mination and detection modes, to extract the same material parameters of the same root tip. Because of the gating 
effect by confocal detection the influence of the various scattering orders on image formation is changed. Thus the 
weighting by the photon fractions in the superposition of eq. (1) has to be modified in order to enable the fitting 
of the frequency transfer extracted from confocal images.

Alternative methods like collimated transmission measurements and goniometry39 require thin samples. Our 
model is also applicable to thick samples, which can be described neither by the quasi ballistic regime nor by the 
diffusive regime40.

The results are summarized in the following table (Table 1) and indicate that the extracted material param-
eters μsca and γ agree with each other reasonably. Further details and illustrating movies can be found in the 
Supplementary Text 3. In Supplementary Text 5, the scattering parameters of a bead cluster were extracted. It was 
shown that the scattering parameters are close to the values predicted by Mie theory.

It will be interesting in biology to analyze both scattering parameters over a longer time, e.g. during root tip 
development and during responses to external stimuli, since they provide biophysical, structural and possibly 
mechanical information about the state of the cellular compound. This information is usually not visible with 

Gauss Conventional Gauss Confocal Bessel Conventional Bessel Confocal

μsca (1/mm) 50 39 42 51

γ 22.4 18.9 22.3 15.6

Table 1.  Scattering parameters obtained by fitting the frequency transfer.
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standard fluorescence imaging. It will be an interesting future task to extract this information spatially resolved 
over areas of different cellular morphology within the root tip.

Conclusion
A severe and unsolved problem is the multiple scattering of fluorescent light on the way to the detector, thereby 
blurring the images. This effect is the stronger, the larger the object and the longer the way of the photons through 
the scattering object. We have presented an effective and elegant solution to this problem, leading to a significant 
improvement in image quality. We separated the image contributions of the diffusive and the ballistic photons by 
postprocessing. Our approach, which does not require a priori information, neither slows down the acquisition 
speed of light sheet microscopy, nor are any iterative image acquisitions required, as this is the case with adaptive 
optical approaches. Our algorithm is applicable to most new and existing 3D data sets suffering from image blur 
due to scattering of fluorescence light. It should be beneficial to every light-sheet microscopist and could in prin-
ciple be applied to other microscopy techniques.

Methods
Theory of image formation. Image generation in light-sheet microscopy. The formation of a 3D image 
p(r) can be described by a convolution (symbol * ) of a 3D object distribution f(r), e.g. the fluorescence emission 
distribution, with the system PSF hsys(r):

= ∗p f hr r r( ) ( ) ( ) (2)sys

The impulse response hsys(r) of the imaging system is assumed to be shift invariant and contains the information 
on resolution and contrast. In LSM an effective systems-PSF hsys(r) can be defined, which is given by

= ⋅h h hr r r( ) ( ) ( ), (3)sys ill det

where hill(r) and hdet(r) are the effective illumination PSF and the detection PSF respectively9,41. The light-sheet is 
formed by a single beam with intensity hSB(r) scanned with velocity = =x v d T/d

dt s M
1

slit , with T being the expo-
sure time of the camera and dslit the slit width, if confocal detection is applied. For better readability the transver-
sal magnification of the detection optics is set to |M| =  1. Thus the illumination PSF effective for one pixel line 
during T reads

∫
= ∗










=







→

− → ∞
.

−∞

∞h h x y z x
d

h x y z d

h x x y z dx d
r( ) ( , , ) rect

( , , ) if 0

( , , ) if
(4)s s

ill SB
slit

SB slit

SB slit

The influence of the rectangular slit function ( )rect x
dslit

 is effective through a convolution in x-direction with the 
radially symmetric beam hSB(r) (see further explanations in the Supplementary Text 6). In the case of conventional 
widefield detection, the slit width is very broad, such that dslit →  ∞  and →( )rect 1x

dslit
. Thereby the light-sheet 

intensity ∫→ −
−∞

∞h h x x y z dxr( ) ( , , )s sill SB  is maximally broad in x-direction. However, in the case of confocal 
line detection the slit width is very narrow, such that dslit →  ∞  and δ→( )rect x( )x

dslit
 and thereby hill(r) →  hSB(r). In 

this case the system PSF is = ⋅h h hr r r( ) ( ) ( )sys SB det , resulting in a confocal PSF in x- and y- directions. Since the 
illumination NA is smaller than the detection NA and thus hill(r)is much broader than hdet(r), the multiplication 

⋅h hr r( ) ( )ill det  is mainly effective in detection direction y, i.e. normal to the light-sheet. It should be emphasized that 
the confocal PSF ⋅h hr r( ) ( )SB det  is mainly beneficial if the profile of hill(y) in y-direction is broadened compared to 
hSB(r). This is the case for a Bessel beam with lateral profile ≈ ⋅ +π

λ( )h x yr( ) J NASB 0
2 2 2 , but not for a Gaussian 

beam. Therefore confocal detection leads to a strong suppression of the fluorescent background made for Bessel 
beam illumination9.

Image generation in combination with an object response function. If LSM is used to capture a 3D image stack of 
strongly scattering objects a significant decrease in image quality with increasing detection depth y0 can be seen. 
This loss of image quality with y0 corresponds to a low pass filtering, which can be modeled by a convolution with 
an additional object response function hobj(r, y0) describing the influence of the object on the detection process. 
Consequently, hdet(r) is replaced by hdet(r) *  hobj(r, y0) and the effective system PSF can be written as

= ∗ .h y h h h yr r r r( , ) ( )( ( ) ( , )) (5)sys 0 ill det obj 0

The fact that hsys is now a function of y0 indicates that the image process is no longer a 3D shift invariant 
problem and hsys(r, y0) should be used for one specific detection depth y0. Thus, the final 2D-image obtained from 
position y0 is given by

∫ δ= ∗ − .p x y z h y f y y dyr( , , ) ( (r, ) ( )) ( ) (6)0 sys 0 0

Eq. (5) shows that the influence of hobj(r, y0) on the image process is highly anisotropic and depends on 
hsheet(r). A good light-sheet has only a small extent in detection direction y. Due to the multiplication in eq. (5), 
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the spread caused by hobj(r, y0) is limited to the light-sheet thickness. The same is true in scanning direction x, if 
confocal detection is applied (dslit →  0, hill(r) →  hSB(r)). This results in a gating effect.

Depth specific scattering of fluorescence photons. To understand the depth dependence of hobj(r, y0), one has to 
consider the exponential decrease of the number of ballistic photons and the increase in diffusive photons that 
travel over the distance y0 through the object towards the detector. The larger the detection depth y0, the larger 
is the average of the scattering order j, which indicates the number of scattering events a fluorescence photon 
involved in the imaging process has survived. In this way, cj(y0) denotes the percentage of j times scattered pho-
tons at depth y0, such that cj=0(y0) is the fraction of ballistic photons contributing to the image. Since every scat-
tering order carries a different amount of information, the image process for each order j is described by a specific 
object response hobj,j(r, y0). Then the overall object response hobj(r, y0) is given by the weighted superposition

∑µ γ µ γ= ⋅ .
=

∞
h y c y hr r( , , , ) ( , ) ( , y , )

(7)j
j jobj 0 sca

0
0 sca obj, 0

As indicated by eq. (7), the fraction cj depends on the scattering coefficient μsca, which describes the probability 
for a photon to be scattered while propagating a certain distance through the object. By neglecting absorption, 
one finds (see Supplementary Text 7)

µ µ µ= ⋅ ⋅ − .c y
j

y y( , ) 1
!

( ) exp( )
(8)j

j
0 sca sca 0 sca 0

For ballistic photons (with j =  0), cj(y0) results in the Lambert-Beer law, exp(− μscay0). The term µ⋅ y( )
j

j1
! sca 0

 
extends the Lambert-Beer law to higher scattering orders. Figure 6 shows an example of the distribution of fluo-
rescent photons over the scattering orders given by eq. (8).

The second term in eq. (7) describes the change in shape of the specific object response hobj,j(r, y0), which 
depends on the scattering order and can be approximated by

γ γ
≈ ⋅






−
⋅ 




.h y A

jy
r r( , , ) exp 3

4 (9)
obj,j 0

2 2

0
2

where A is an unimportant normalization factor. A detailed derivation for eq. (9) can be found in Supplementary 
Text 8. The broader the specific object response function, the more high-frequency information is lost. This loss 
in information increases with every scattering event and with the detection depth y0 to the focal plane. It is impor-
tant to note that for ballistic photons hobj,j=0(r, y0) becomes a δ -function. This is in agreement with the fact that 
these photons are not affected by the object. hobj,j(r, y0) also depends on the material specific unit γ, which 
describes the angular width of the scattering phase function θ γ=





− ⋅




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θ
θ ( )( )PDF ( ) exp sin

2

2
2 , with θ being the 

scattering angle (see Fig. 4b,d)). The relation to the anisotropy factor gHG, known from e.g. the Henyey-Greenstein 
function42, is given by = −γ

γ( )g cothHG 2
22

2
 with coth being the hyperbolic cotangent. We find γ →  0 for 

Rayleigh scatterers (PDFθ(θ) =  1) and γ →  ∞  for forward scatterers (PDFθ(θ) =  δ(θ)).
In Fourier domain one finds the depth dependent fluorescence photon object transfer function Hobj(kr, y0) 

= ≈



−



γFT h yr k[ ( , )] exp j y

robj 0
2

3
0
2

2 , which describes the influence of the object only (hereby no prefactor is 

needed; see Supplementary Text 8). Since hobj(r, y0) was assumed to be a sum of Gaussian functions (see eq. (7)), 
the Fourier transform Hobj(kr, y0) µ≈∑




−



γ=
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2
 also consists of a sum of Gaussians. The  

Figure 6. Photon emission from different detection depths inside the scattering object. Composition of all 
emitted photons by groups of photons of different scattering order. With increasing detection depth the fraction 
of ballistic photons (c0) drops exponentially (black curve), while one (c1) and multiple times (cn) scattered 
photons gain influence.
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contribution of the ballistic photons in real space is described by an infinitely small Gaussian function identical 
to a Dirac delta function. Accordingly in Fourier domain ballistic photons are considered by an infinitely wide 
Gaussian function or a constant offset. By use of the power series representation of the exponential function the 
object transfer function can be rewritten as follows:

∑µ µ
γ

µ
γ

≈ − +
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Eq.  (10) reveals that the frequency transfer of the fluorescent photons consists of a constant level 
µ→ ∞ = −H y yk( , ) exp( )robj 0 0 sca  describing the ballistic photons and a Gaussian part describing the diffuse 

photons. Due to the transfer function’s constant levels → ∞H yk( , )robj 0  for every plane y0, the influence of the 
object on the detection process can be eliminated by a deconvolution with Hobj(kr, y0) as long as the intensity of 
the ballistic photons does not drop below the noise level.

Contrast coefficient. The detection depth dependent contrast is analyzed by a method derived from the 
“useful contrast” introduced by Truong et al.32. The contrast coefficient Q is defined by the ration of high and low 
frequency contents in the image. Therefor xz-slices of the image p(x, y0, z) are Fourier transformed in x- and 
z-direction. In Fourier space the image is divided in an image containing the high spatial frequencies (HSF; 
= + >⊥k k k kx z c

2 2 ) and one consisting of the low spatial frequencies (LSF; <⊥k kc). If kc is chosen in a way 
that the HSF image contains all useful information of the object and the LSF image is mainly defined by the back-
ground signal the contrast coefficient is an appropriate measure of the image contrast.

In contrast to the method introduced by Truong, no upper frequency limit for the useful signal is defined. By 
the upper limit high frequency noise is separated from the useful signal. If one wants to perform a comparison of 
different detection depths, this limit is hard to define, since for medium frequencies the signal to noise ratio drops 
down with increasing detection depth. An alternative is noise adaption. Hereby the Fourier transformations in in 
x- and z-direction FT p x y z{ ( , , )}x z, 0  are first normalized by the DC value and white noise is added until the 
integral ′

> . ⋅⊥
∬ FT p x y z dk dk{ ( , , )}

k k x z x z0 9 , 0
N

 reaches a predefined value nl. If the noise in the original image is 
white noise and the lateral frequencies > . ⋅⊥k k0 9 N  contain no useful information, this procedure leads to 
images with the same noise level nl for all detection depths. So a comparison, which is not effected by noise, is 
possible by the contrast coefficient
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Here ′FT p x y z{ ( , , )}xz 0  is the Fourier transformation processed by the procedure described above and kN is the 
Nyquist-frequency.

Extracting scattering parameters from the image. With the model for hobj(r, y0) given in eq. (10) the 
influence of the object itself on the detection is described only by two parameters μsca and γ. This method extracts 
these parameters out of a 3D image stack. Since the most compact form of hobj(r, y0) is found in Fourier domain, 
the image stack is first Fourier transformed in x- and z-direction. To eliminate variations of the object spectra the 
data is smoothed in y-direction. Normalizing the smoothed spectra to a reference spectra at y0 =  0 eliminates the 
influence of the object spectra on the image process. In this manner the normalized and averaged image spectrum

∫
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∫
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is generated, with 2b being the smoothing interval. The integration along the polar angle ϕ (see inset in Fig. 4b)) 
from 0 to 2π  reduces the dimensions of the dataset. So ⊥p k y( , )rel 0  depends on 2 variables y0 and k⊥. This data is 
fitted by the model from eq. (10) with ky =  0 and = +⊥k k kx z

2 2 . This way the scattering parameters μsca and γ 
are obtained. More detailed information about the theoretical background of this method is given in 
Supplementary Text 3.

Depth dependent deconvolution. If the effective illumination hill(r) and the detection PSF hdet(r) as well 
as the parameters μsca and γ describing the influence of the object on the detection are known, the system PSF 
hsys(r, y0) can be calculated by eq. (5). As indicated by eq. (6) a perfect depth dependent deconvolution needs a 
complete 3D deconvolution for every y0. This leads to a huge computation time. Since hsys(r, y0) is not changing 
rapidly with y0, a more hardware friendly method is possible. Therefore the 3D image is deconvolved several times 
by a conventional Wiener filter. For each deconvolution the Wiener filter is optimized for another y0 and each 
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deconvolved image pdecon,Wiener(r, y0) is optimized for one specific y0. The depth dependent deconvolved image 
pdecon(r) is calculated by

∑= = ⋅ ∆ ⋅ ∆
=

p p y i y w y y ir r( ) ( , ) ( , , ),
(13)i

n

decon
0

decon, Wiener 0

with the window function w defined as the shifted Hann window:
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Here + = ∆ +⌈ ⌉n y y1 / 1obj  =  12 is the number of sections of thickness Δ y and yobj is the object dimension in 
y-direction. The Wiener filter is given by
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where ∼H yk( , )r 0  is given by the Fourier transformation of eq. (5). The frequency dependent signal to noise ratio is 
estimated linearly: = −( )AkSNR( ) 1
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 with = + +k k k kr N x N y N z, max ,

2
,

2
,

2  given by the Nyquist frequen-
cies in all directions. The choice of the parameter A is a compromise between high frequency enhancement and 
noise suppression. Models for hill(r) and hdet(r) are obtained by the angular spectrum wave propagation method.
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