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Stiffness of Optical Traps: Quantitative Agreement
between Experiment and Electromagnetic Theory
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The first quantitative agreement between measured and calculated stiffnesses of optically trapped
particles in the subwavelength regime is presented. It is shown for all three dimensions that the measured
extent of harmonic optical trapping potentials for dielectric spheres comes very close to the theoretically
predicted extent, provided all known instrumental parameters are considered. The recently predicted
strong asymmetry of the trapping potential due to the electric field’s linear polarization has been verified
in all three directions. This effect vanishes for spheres with diameters d � �, which exhibit the strongest
trap stiffnesses.
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Optical tweezers allow contactless holding and moving
of particles in three dimensions [1] and have found broad
applications in biophysics and colloidal sciences. Charac-
terizing the optical trapping forces in the focus became
necessary when small external forces had to be measured
both in and far from equilibrium. Coherent light that is
tightly focused with a standard microscope lens can gen-
erate a trapping potential W�r�, which is harmonic over a
fraction of the trapping wavelength. In such a trap the
linear restoring force @iW�xi� � �i�xi � xi0�, in direction
xi, can be described by the force constant or stiffness �i
(i � x; y; z and @i � @=@xi). The optical force is zero at
point xi0. Although the potential is parabolic around xi0,
theories describing the correct trapping forces have failed.
In a recent review it was stated [2]: ‘‘although the theory
behind optical tweezers is still being developed, the basic
principles are straightforward for objects either much
smaller than the wavelength of light or much larger.’’ It
is curious that a physical theory agreeing with carefully
measured data is still missing even considering that the
most frequently used particle size is around the wavelength
or slightly smaller.

The reasons for this are the large number of parameters
describing the incident electromagnetic field, the interac-
tion of this field with matter, and the method of how to
measure trapping stiffnesses and forces. All relevant pa-
rameters must be taken into account both in a theory about
trapping forces and in experiments. The necessity of reli-
able theories of optical trapping is underlined by the po-
tential applications of optical trapping forces especially in
nanotechnology, affecting manipulation, organization, pro-
cess induction, and measurements of mesoscopic systems.

Various approaches using electromagnetic theories have
been made to describe the trapping parameters of particles
equal to or smaller than the trapping wavelength. These
approaches are listed and described in Ref. [3] and only
recently in Ref. [4]. However, besides our own work [3,5],
only two studies used a realistic, aperture limited incident
field [6,7] to calculate optical trapping forces. Most other
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studies were based on highly focused Gaussian beams
( sin�> 0:8), which differ strongly [3] from a vectorial,
diffraction limited focus as described by Richards and
Wolf [8], and which are not a solution of the wave equa-
tion, i.e., therefore do not exist in nature.

Although the trap stiffness provides no information
about the maximum trapping force or the depth of the
trapping potential, it is an important parameter especially
in Brownian systems. Via the equipartition theorem
1
2 kBT �

1
2�ihxii

2 and the Einstein relation 1
2 kBT �

1
2D�,

the stiffness encodes information about fluctuation vol-
umes hxii, the diffusion constant D, or the viscous drag �
of a particle in a medium.

In this Letter, I compare theoretically and experimen-
tally obtained trap stiffnesses for dielectric particles in the
most frequently used size regime between 0:2 �m and
1:0 �m and with refractive indices ns � 1:43 (silica) and
ns � 1:57 (polystyrene). The main parts of a theory, which
is derived from the electromagnetic force density [9] and
which is called the two-component approach, are reformu-
lated and summarized.

Instrument.—An infrared corrected water immersion
lens with a numerical aperture NA�nm sin��1:2 is
used in our setup [10]. The refractive index of the me-
dium (water) is nm � 1:33 and the laser wavelength used is
�0 � 1:064 �m in air (� � 0:8 �m in water). The inci-
dent field, a Gaussian TEM00 mode of E0 � E0 � ex, is
linear polarized in x and over illuminates the back focal
plane (BFP) of the trapping lens by 200% (i.e., the Gauss-
ian beam waist is 2 times the diameter DBFP of the BFP).
The aplanatic trapping lens fulfills the sine condition and
leads to a spatially varying apodization at the BFP [3]. The
transmission of the lens is T � 62% at �0 � 1:064 �m.
Laser powers were measured behind the BFP [10].

Theory.—The electric field Ei�r� in the focus can be
described as a composition of plane waves in the BFP with
weighting factors ~Ei�kx; ky� (angular spectrum representa-
tion) [3]. In coherent optics the z component of the k vector
is kz � ��kn2 � k?

2�1=2 � kn cos�, k? � �kx2 � ky2�1=2,
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k0 � jk0j � 2�=�0 � kn=nm. Therefore, the integral rep-
resenting the field in the focus is only two dimensional:

Ei�r� �
1

�2��2
ZZ

k?	k0NA

~Ei�kx; ky� exp��ikr�dkxdky: (1)

Ei�r� is the vectorial Fourier transform of the pupil func-
tion ~Ei�kx; ky�with radius k0NA � kn sin� considering the
NA of the lens. The three components of ~Ei�kx; ky� �

 ~Eix�kx; ky�; ~Eiy�kx; ky�; ~Eiz�kx; ky�� are defined by a polar-
ization function P�kx; ky� [11,12]. The modulus squares of
the three components jEixj2, jEiyj2, and jEizj2 add and re-
sult in an asymmetric focus distribution as shown in Fig. 1.

The total scattered field is obtained as follows: first, the
spectrum ~Es�kx; ky�, resulting from the scattering of a
single plane wave with amplitude E0 and direction ki �
knez at a sphere is calculated with Mie theory:

~Es�kx; ky� � E0 � T2�kx; ky� �
kx

kn � k2
?

� �kx; ky;�k2
?=kz�

� E0 � T1�kx; ky� �
kx

kz � k2
?

� �kx; ky; 0�: (2)

Here T1 and T2 are the angle-dependent Mie-scattering
functions parallel and perpendicular to the plane of inci-
dence [13]. In a next step, all other scatter spectra M �
~Es�kx; ky� from the scattering of plane waves with ampli-
tudes ~Ei�kix; kiy� and directions �kix; kiy; kiz� are obtained
by multiplying Euler rotation matrices M�kix; kiy� [12]. All
M�kix; kiy� � ~Es�kx; ky� with ki? < k0NA are superposed.
The scattered field Es�r;b� at point r or its angular spec-
trum ~Es�kx; ky;b� change with the particle position b
relative to the center of the focus.

Trapping forces are derived from the Lorentz force
density f � �prE� � @p=@t�B for dipoles, where a lin-
ear response on the total electric field p�r; t� �
�0 � "E�r; t� is assumed. Higher polarization moments
are neglected, which is valid for reasonable laser powers
and the specified particle sizes. E�r; t� and B�r; t� are the
total electric and magnetic field, respectively. The polar-
izability on a volume element V is �0 � 3V �m2 �
1�=�m2 � 2�, where m � ns=nm is the ratio of the refrac-
tive indices of the scatterer and the surrounding medium
and " � nm2"0 is the electric permittivity [14]. After in-
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FIG. 1. Asymmetric intensity distribution I�x; y; z � 0� in the
focal plane for linear polarized light and NA � 1:2. The sum of
the intensities of jExj2 (left) and jEzj2 (center) is I � Ix � Iz
(right). The negligibly small component Iy is not shown. The
extents of the plots are 2� by 2�.
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tegrating the time-averaged force density hf�r;b�i �
Re f�0"rjE�r;b�j2g=4V over the volume of the scatterer
at position b, one obtains the expression of the optical
force without the detour of the Maxwell stress tensor [9]:

F �b� �
1

4V
Re

Z
V
�0"rjEi � Es�b�j2dV

�
1

4V
Re

Z
V
�0"rjEij

2dV

�
1

4V
Re

I
@V
�0"n
E
iEs�b� � EiE
s�b�

� jEs�b�j2�dA: (3)

The force is split into two components, the gradient
force and the scattering force, resulting from the incident
and the scattered field, Ei and Es. The scattering force
(described by the surface integral) results from the extinc-
tion and redistribution of momentum. For dielectric par-
ticles in the Rayleigh-Gans regime (also known as Born
approximation), the following expression for the two force
components is valid [14]:

F�b� � Fgrad�b� � Fsca�b�

�
�0nm
2cV

Z
V�b�
rI0�r�d3r

�
nm
kc
I0�b�
Cext�b�hki�b�i � Csca�b�hks�b�i�: (4)

The space-variant gradient rI0 of the incident intensity
I0�r� � c"=2jEi�r�j2 is averaged over the particle volume
in real space. With this first-order Born approximation one
avoids the elaborate calculation of the electric fields on the
surface of the scatterer or the exact internal fields. The
second term in Eq. (4) describes the extinction and redis-
tribution of momentum, given by the cross sections Cext �
Csca � Qsca��d=2�2 together with the mean momentum
vectors hkii and hksi of the incident and scattered fields,
respectively [3]. They are all functions of the far-field spec-
tra ~Eext�kx;ky;b��FTfEi�x;y;bz�q�x�bx;y�by�g for ex-
tinction and ~Es�kx; ky;b� for scattering, (FT � Fourier
transform). q�x; y� is an extinction function removing the
fraction Qsca from the incident intensity jEi�x; y; bz�j

2 at
the position �bx; by� of the scatterer, 
q�x; y��2 � 1�

Qsca��d=2� r�, r � �x2 � y2�1=2, ��r� � Heaviside step
function.

Finally, the force constants �i at the trapping position
�0; 0; z0� are obtained according to �i � @iFi�xi�jxi0 �
@i
Fi;grad�xi� � Fi;sca�xi��jxi0 . The calculation results point
out that in lateral direction @iFi;grad and @iFi;sca have op-
posite signs, whereas in axial direction they have the same
sign. Therefore, the scattering force decreases the trap
stiffness in lateral direction, but increases the stiffness in
axial direction [see, e.g., Fig. 5 of [3] ].

Experiments.—The three-dimensional position signals
Si�xi� (i � 1; 2; 3) of various trapped particles at various
laser powers were tracked with back-focal-plane interfer-
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ometry [15]. 400 000 positions were recorded at 100 kHz.
The signals Si�xi� � gixi are linear with the displacement
xi over a sufficiently large range. The signal autocorrela-
tions hSi�t�Si�t� ��i � hjSi�0�j2i exp����i=�� provide
the autocorrelation times �i, i.e., the stiffnesses �i��=�i
for known viscous drag � � 3�d	 (d � sphere diameter,
	 � viscosity, 	�T � 295 K� � 950 �Pa � s). Glass
spheres with refractive index ns � 1:43 and mean diame-
ters d � 0:64 �m and d � 1 �m were used as well as
polystyrene (PS) spheres with ns � 1:57 and d �
0:216 �m . . . 1:66 �m. All spheres are from Bangs Labs
Inc., except for the fluorescence labeled 0:216 �m,
1:03 �m, and 1:66 �m beads (Polysciences, Inc.). Laser
powers were varied between 4.8 mW and 48 mW. For each
particle type about 50 measurements on three particles
were performed and analyzed.

Results.—Figure 2 shows the expected linear dependen-
cy between trap stiffnesses and laser power. But, and this
has never been shown before, the trap reveals a strong
asymmetry also in lateral direction, which is due to the
electric field’s linear polarization. This difference in the
lateral trap stiffness was strongly reduced by inserting a
quarter wave plate (the light remained slightly elliptically
polarized due to polarization dependent dichroic mirrors).
The triplet of measured trap stiffnesses f�x; �y; �zg is sum-
marized in Table I for all particles investigated, whereas
Table II shows the different ratios of trap stiffnesses. The
lateral stiffnesses �x and �y are calculated at the predicted
axial trapping position z0 according to �i � @iFi�xi�jz0.

Figure 2 also demonstrates the accuracy of the theoreti-
cally predicted stiffnesses (lines) for the three smaller
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FIG. 2. Trap stiffnesses along x, y, and z as a function of laser
power in an x-polarized beam. The symbols correspond to
experimental data, whereas the lines describe the theoretical
force constants.
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spheres (d � 0:22, 0.53, and 0:64 �m), which show an
unequaled agreement with the experimental values (sym-
bols). In lateral directions the difference between theory
and experiment is 2%–6%; in axial directions it is 10%–
30% depending on the sphere size. For the larger particle in
Fig. 2 with d � 0:85 �m and central phase shift �
 �
�ns � nm�k0d � 1:2 the trap is nearly symmetric in x and
y, whereas the calculated results yield a (modest) asym-
metry. Here the size and phase shift are beyond the Born
approximation used in Eq. (4). For the 1:03 �m PS sphere
�x and �y were not calculated at the predicted position
z0 < 0, but at the likely position z0 � 0:1 �m.

Figure 3 summarizes the results of the comparison be-
tween electromagnetic theory and experiment for PS
spheres, showing the normalized stiffness per unit laser
power as a function of the sphere’s diameter. �x and �y
increase with the sphere diameter d until d reaches the
expected lateral extent of the focus �y�I0=e2� � 0:8�y �

�with � � 0:8 �m. �y�I0=e
2� is the width where the focus

intensity decreases to 1=e2 of the maximum intensity I0.
We expect the same behavior for the axial stiffness �z at a
theoretical axial focus extent of �z � 2:3�y [16]. �x and
�y fall off again for diameters d > �y. The same nonlinear
behavior is predicted by the theory as shown in Fig. 3 and
Table I (for the 1:66 �m bead we solely calculated the
gradient force). At the same time, a vanishing asymmetry
of the trap due to polarization at d � � � 0:8 �m was
measured. This asymmetry effect is confirmed by the
calculations. Table II shows the relative trapping stiff-
nesses for both theory and experiment. It can be further
seen that a trapping potential becomes less prolate in axial
direction with increasing sphere size; i.e., the ratio of
trapping stiffnesses �xy=�z decreases. The ratios �xy=�z �
7 and �xy=�z � 4 are illustrated by the measured position
traces of a 0:22 �m bead and a 1:03 �m bead in the right-
hand side of Fig. 3.

Conclusions.—It has been shown for the first time that
results from an electromagnetic theory of optical trapping
forces considering all known relevant parameters are in
very good agreement with experimental results for spheres
TABLE I. Sphere parameters and measured trapping stiff-
nesses at a laser power of P � 10 mW in the focal plane. D is
the mean sphere diameter in �m, ns the spheres refractive index,
�
 � �ns � nm�k0d the central phase shift; �x, �y, and �z are
the measured trap stiffnesses in pN=�m.

D ns �
 �x �y �z

0.22 1.57 0.31 1.46 2.36 0.27
0.53 1.57 0.76 14.6 21.1 2.91
0.69 1.57 0.98 24.2 26.5 4.29
0.85 1.57 1.20 29.4 30.4 5.03
1.03 1.57 1.46 28.2 25.2 6.20
1.66 1.57 2.35 11.0 10.0 3.85
0.64 1.43 0.38 9.45 12.6 1.58
1.00 1.43 0.59 10.6 10.0 2.91
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FIG. 3. Change of the force constant per unit laser power for
various polystyrene spheres (� � 800 nm in water). White
markers indicate theoretical values, black markers experimen-
tally obtained stiffnesses, experimental error bars are all below
1%. The lines are drawn to guide the eye. Right: the trapping
volumes of a 0:22 �m and 1:03 �m bead indicate the different
ratios of axial to lateral stiffness.

TABLE II. Sphere parameters and relative trapping stiffnesses.
1� �x=�y is the difference in lateral stiffness illustrating the
polarization effect; �xy=�z � ��x � �y�=2�z is the ratio between
mean lateral and axial stiffness.

1� �x=�y �xy=�z
D ns Theory Experiment Theory Experiment

0.22 1.57 0.37 0.38 6.5 7.1
0.53 1.57 0.32 0.31 5.0 6.1
0.69 1.57 0.33 0.08 4.7 5.9
0.85 1.57 0.16 0.03 4.2 5.9
1.03 1.57 0.05 �0:12 3.8 4.3
1.66 1.57 �0:10� �0:10 �2:1� 2.7
0.64 1.43 0.28 0.25 4.6 7.0
1.00 1.43 0.02 �0:06 3.3 3.5
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with diameters d < � and in good agreement for spheres
d � �. The lateral trap stiffnesses �i, and with them the
extents hxii of the trapping potentials, differ strongly in
lateral directions due to the electric field’s polarization.
This effect vanishes as d reaches the lateral focus extent. At
this diameter the maximum lateral trapping stiffness is also
achieved. A third effect coupled to the first two is that the
size of the trapped sphere determines the aspect ratio of the
trapping potential; i.e., the stiffness ratio �xy=�z decreases
for larger spheres.

These three observations can be interpreted by means of
the two components force approach as follows: first, the
lateral gradient force F?;grad�x?� and therefore the gradient
@?F?;grad�x?� are reduced by averaging the intensity gra-
dients over sphere volumes larger than the dimensions of
the focus (@?F?;grad reaches a maximum). Second, the
repelling lateral scattering force F?;sca > 0 increases for
larger spheres and compensates the attractive F?;grad < 0
such that �?�@?F?;sca�@?F?;grad decreases. Third, the
radiation pressure (axial scattering force Fz;sca) increases
with the sphere size and therefore amplifies the axial trap
stiffness �z � @zFz;grad�z� � @zFz;sca�z� at the trapping po-
sition z0 (@zFz;grad and @zFz;sca have the same sign).

I state that the Born approximation (which is used to
determine Fgrad) delivers reasonable results even for a
central phase shift �
> 1 in the case of highly focused
fields. Although Fgrad plays a dominant role for optical
trapping of subwavelength particles, the effect of Fsca for
spheres with �
�1 and with diameters close to the trap-
ping wavelength cannot be neglected [as was done by
Tlusty et al. [17] ]. They obtained a satisfying coincidence
between theory and experiment in one lateral dimension,
although they used arguable approximations concerning
the particle and the focused beam. The good coincidence
between our theory and experiments would not have been
possible without the influence of Fsca and the realistic de-
scription of the incident focused field. This was inspected
by looking at the stiffnesses solely obtained by Fgrad. The
need to calculate the redistribution of momentum via Fsca
16810
is underlined by the fact that the scattered light delivers the
exact position of the particle inside the trap [12].

I believe that this study delivers an important contribu-
tion towards a better understanding and optimization of
optical trapping forces for subwavelength sized particles.

I thank Dr. Ernst Stelzer for general support, Peter Seitz
and Alfons Riedinger for the development of the automa-
tion software, and Holger Kress and Dr. Jim Swoger for
helpful discussions.
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