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Abstract: Multi-dimensional, correlated particle tracking is a key 
technology to reveal dynamic processes in living and synthetic soft matter 
systems. In this paper we present a new method for tracking micron-sized 
beads in parallel and in all three dimensions – faster and more precise than 
existing techniques. Using an acousto-optic deflector and two quadrant-
photo-diodes, we can track numerous optically trapped beads at up to tens 
of kHz with a precision of a few nanometers by back-focal plane 
interferometry. By time-multiplexing the laser focus, we can calibrate 
individually all traps and all tracking signals in a few seconds and in 3D. 
We show 3D histograms and calibration constants for nine beads in a 
quadratic arrangement, although trapping and tracking is easily possible for 
more beads also in arbitrary 2D arrangements. As an application, we 
investigate the hydrodynamic coupling and diffusion anomalies of spheres 
trapped in a 3 × 3 arrangement. 
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1. Introduction 

Position tracking of particles has gained tremendous interest during the last years since a 
particle’s trajectory r(t) delivers an image of the interaction with its environment. Tracking 
diffusing particles in soft matter systems and deriving local interactions is of extreme 
importance in biology [1,2], chemistry [3,4] physics [5,6] and a variety of technical 
disciplines [6,7]. For slow processes or processes in thermal equilibrium, the histograms of 
the particle’s tracked positions enable recovering the underlying landscape of free energy G(r) 
or forces ∇G(r), which also include enthalpic and entropic processes [8]. The faster and more 
precise a tracking method is, the more reliable and precise the histogram can be generated, 
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which often represents a good approximation of the particles probability density function p(r). 
The precision of a tracking system defines the resolution Δr of the position histogram or of 
p(r) [9], which can be down to a few nanometers and which is usually independent of the 
optical resolution δx ≈ λ/2 of a conventional microscope. From p(r) the landscape of free 
energy G(r) = kBT⋅ln(p(r)) + const. can be derived (kBT ≈ 4⋅10−21 J is the thermal energy). 

A fast and precise tracking system is even more indispensable for measuring dynamic 
interactions such as in micro-rheology [10] or for processes out of thermal equilibrium [11]. 
In this case analysis of correlations [12] or of power spectral densities allows the 
measurement of processes inside living cells [13], or more specifically, the hydrodynamic 
interaction of particles in a fluid [14,15]. 

Although a great variety of technical attempts have been made in the last years, it is still 
an ambitious, unachieved goal to track many particles in parallel in 3D at nanometer precision 
and at rates of several kilohertz. For the case of trapped particles, this would allow in addition 
to calibrate each optical trap independently and in 3D. 

The most direct approach to reach this goal is to use a fast camera and to determine the 
center of mass of the particles image (video tracking) [16]. Although several methods have 
been proposed to determine also the exact axial position of the particle by focus blur analysis 
[17,18], by holographic techniques [6,19,20] or structured illumination [21,22], axial tracking 
is a profound drawback of camera based methods. In axial direction the precision is 
significantly worse than in the lateral directions and/or is not robust against changes of the 
local environment, since the fit-functions required to analyze the diffraction patterns on the 
camera often change with the environments refractive index and the plane of focus. 

On the other side, techniques based on position sensitive devices, such as back-focal plane 
(BFP) interferometry are 1-3 orders of magnitude faster than video tracking [23–25]. In 
addition, BFP interferometry enables the very easy concept of calibrating the detector by the 
Langevin method, where 1-5 seconds of diffusions time are enough to determine the 
proportionality between signal and particle displacement in all three dimensions [24]. 
Although the axial tracking range of BFP interferometry is shorter than with some video 
tracking techniques, it has been extended to several particle diameters by various techniques 
[12,26] - sufficient for most optical trapping applications and still offering unmatched axial 
tracking precisions of 1-5 nm. 

3D tracking of multiple particles in the kilo-Hertz range and individual trap calibration has 
been achieved recently by BFP interferometry of spheres in a time-multiplexed optical line 
trap [27], and for particles trapped with holographic optical tweezers (HOT) by digital 
holographic tracking [20], or in 2D by video tracking [28]. However, 3D tracking in the range 
of several kHz or faster of dozens of particles has not been achieved yet. This would allow 
determining position cross-correlations of hydrodynamic or nano-mechanically coupled 
particles, which would enable new insights into correlated soft matter systems and cell 
biology. 

In this paper we present a method, where time multiplexed optical tweezers can trap N 
different particles in N traps and determine their 3D positions by using sequential BFP 
interferometric tracking (here N = 9). This enables an independent calibration of both particle 
displacements and optical forces of N different particles in N different traps within seconds. 
Due to the high tracking rate of 100/N ≈11 kHz, we show cross-correlation results of many 
particle hydrodynamic couplings. 
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2. Experimental configuration 

Trapping and tracking of multiple particles is achieved by a self-made photonic-force-
microscope (PFM) as described in principle in [24] and in [27]. Arbitrary focus and trap 
arrangements in a single plane have been achieved by time-multiplexing with help of a two-
axis acousto-optic deflector (AOD) as schematically shown in Fig. 1(a). The optical path of 
the PFM comprises of a 2W 1064nm light source (Smart Laser Systems, Berlin), which passes 
first an optical isolator FI (OFR-IO-3-1064-VHP, Laser 2000), a beam expander and then the 
AOD subsequently (DTSXY-400, AA Opto-Electronic). The transmittances of the AOD are 
controlled to obtain long-term laser stability and specific laser intensity in every focus. A 
feedback-loop adjusts the transmittance of the X-AOD with respect to the low pass filtered 
(miniNE, TEM Messtechnik) intensity signal of an InGaAs photodiode (G8370-81, 
Hamamatsu Photonics), whereas a preamplifier (TEM Messtechnik) provides the required 
driving current to control the transmittance of the Y-AOD and therefore the power in every 
focus. A telecentric lens system (AC80, AC250) magnifies the AOD aperture on the BFP of 
the objective lens OL (UPLAPO60X/IR, Olympus) as outlined in Fig. 1(a). The OL creates 
the different time-shared foci in the object plane with discrete distances dx and dy. The 
interference pattern of the unscattered and the forward scattered laser light by the particle is 
projected via a detection lens DL (44069, Carl Zeiss) and two different 4f lens systems (not 
shown, defining the spatial filter function H(kx,ky) in Eq. (1)) onto two quadrant-photo-diodes 
(QPDs). The two QPDs (G6849, Hamamatsu Photonics) differ in their effective numerical 
aperture NA to increase the signal quality for all three dimensions [26]. Silica beads with 
diameters of 0.623µm and 1.16µm were used in the experiments (SiO2-F-31000, SiO2-F-
B1060, Microparticles GmbH) as shown in the image of Fig. 1(b). 

 
Fig. 1. Principle of setup and laser displacement scheme. (a) The aperture of a 2D-accousto-
optic deflector (AOD) is imaged telecentrically on the BFP of the objective lens (OL), leading 
to a displacement of the trapping and tracking beam in the focal plane of the OL. For each 
beam center position rL(t) and particle position b, the DL projects scattered and unscattered 
light for a short time onto the QPD. The sequence of beam displacements across all 9 particles 
begins with the central particle #1 (r08 indicates the center of the 8-th focus). (b) Brightfield 
image of four 1.16 µm and five 0.62 µm trapped glass beads separated by adjustable distances 
dx and dy. Bead numbers are indicated nearby each bead image. 
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3. Sequential interferometric tracking in the back focal plane 

Tracking Principle. A single laser focus is time-multiplexed with a two-axis acousto-optic 
deflector (AOD) to create N optical traps with high stability in all three dimensions. As 
indicated in Fig. 1(a), the laser focus sequentially scans the mean positions of N particles, 
rests for a short time τon at each position and thereby creates N effective optical potentials in 
arbitrary 2D arrangements. During the time τon the position bn(t0) of the n-th sphere (n ≤ N) at 
a specific time point t0 is determined. By varying the AOD transmission and thereby the laser 
intensity at each individual trap position, the potential depth and the trap stiffnesses can be 
adjusted very flexibly. For example, trap rearrangements during an experiment and online trap 
calibrations are possible. 

 
Fig. 2. Principles of sequential particle tracking. (a) Sketch of nine particles of different sizes 
arranged in the xy-plane. The exemplary diffusion paths (red and black) represent 
experimentally obtained data. (b) Upper graph: Focus displacements xL(t) and yL(t) as a 
function of time for the bead arrangement displayed in a). Lower Graph: Corresponding QPD 
signals for the particle z-positions. The piece of signal trajectory of the center particle #1 is 
drawn in black. (c) The sample points (red) i, i + 1, i + 2 of the particle trajectory #1 are 
derived by averaging (blue) over ten centered signal points of the raw signal (black) to 
eliminate high frequency fluctuations (>70 kHz) of the AOD. (d) Resulting axial position 
trajectory of particle #1, where the inset shows i = 9 single positions. Three positions with red 
markers, which are derived from the periods i, i + 1, i + 2 in (c), are highlighted.  
  

The QPD detection system tracks intensity and position changes of the beads with 
frequencies of fdet = 1 MHz (limited only by the pre-amplifiers), whereas the AOD varies the 
focus position and intensity, i.e. the trap arrangement at a maximum beam steering frequency 
of about fAOD = 150 kHz. At the frequency fAOD / N the 3D position of N spheres by BFP 
interferometry can be tracked precisely, as we will explain in the following. 

Signal acquisition and correction. In BFP-interferometry a QPD measures an intensity signal 
ˆ ( )nS b on its m-th quadrant with area Am placed in the BFP or a conjugate plane (kx, ky) of a 

detection lens. The interference intensity ˆ ( , )m
LS b r from the incident field Ẽ0,n at position rL 

and the field Ẽs,n(bn) scattered at the n-th particle at position bn(t) can be written as [24,27] 

 
2

0, ,
ˆ ( , ) ( , , , ) ( , , , ) ( , )

m

m
i L n x y L s n x y n L x y x y

A

S k k k k H k k dk dk= + ⋅∫∫b r E r E b r    (1) 
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The function H(kx, ky) represents a spatial filter, which increases the tracking quality [29]. 
From a linear combination of the 4 raw signals 1ˆ ( )S b .. 4ˆ ( )S b , the signal triplet S(b) = (Sx(b), 
Sy(b), Sz(b)) encoding the spheres center position b can be obtained. The positions of the laser 
focus are denoted by rL(t) = (xL(t), yL(t), zL = 0), whereas the center position of the n-th 
particle bn(t) = (bn,x(t), bn,y(t), bn,z(t)) can be assumed to be linear with the measured n-th 
signal intensity Sn(t) = (Sn,x(t), Sn,y(t), Sn,z(t)) [24] as long as particle displacements from the  
n-th trap center are smaller than their diameter, such that 

 ( ) ( ) ( )( )
0

, , , , , , 0 0

( ) ( ) / ( )

( ) , ( ) , ( ) ( ) ( )

( )

raw
n n n n

n x n x n y n y n z n z n n

n n

t t c t

g b t g b t g b t S t t

t

= −

≈ ⋅ ⋅ ⋅ + −

≈

S S S

S

g b



  (2) 

The ability of adjusting the laser intensity in every trap individually is shown by a recursive 
algorithm that reduces the laser intensity by a factor 1/cn in every trap towards the lowest 
measured z-signal (where cn = 1). The factor 1/cn accounts for the deflection dependent 
intensity transmission of an AOD. By subtracting the signal mean S0n(t) from the corrected 
(normalized) signal ( ) ( ) /cor raw

n n nt t c=S S , we end up with the signal Sn(t) (see Fig. 2(b)). ng  is 
approximately a diagonal matrix, where the elements , , ,, ,n x n y n zg g g represent the detector 
sensitivities of the n-th particle in the directions x, y and z. 

Figure 2(a) shows exemplarily an array of N = 9 spheres of different sizes arranged in the 
xy-plane with distances dnx and dny to each other. The nine trajectories bn(t) in red and black 
denote the displacements relative to the n-th trap center, which is at b0n, slightly behind the 
center of the n-th laser focus rn. Therefore the stepwise displacement of the laser focus 
relative to the n-th trap center rn,rel = r0n - rL(t) can be expressed e.g. in x-direction and for 
constant jumps dnx = dx, as 

 ( )
'

, 0
0

( )
N

rel n n L x x
n

x x x t d d t n t
=

= − = − + ⋅Θ − ⋅ ∆∑   (3) 

A Heaviside step function ( )tΘ  describes the jumps of length dx from one focus position to 
the other after the time Δt. For particles in a row, N’ in Eq. (3) is limited to the number of x-
steps in one row (see dotted region in Fig. 2(b) where N’ = 1, dx = 5µm and Δt = 20µs). Both 
xrel(t) and yrel(t) are plotted in Fig. 2(b) together with the measured z-signals for all nine 
particles and over 2 scans with time period τscan. The scan duration τscan is given by N times the 
time Δt between two jumps 

 1/ ( 1)scan on off AODN t f N tτ τ τ= ⋅ ∆ = + = + − ⋅ ∆ .  (4) 

The time, the laser is located at the n-th position can be approximated by 1/on AODfτ ≈  = Δt, 
since the time to jump from position xi to xi + 1 is negligibly small (i counts the number of 
scans of all N particles). We further call the time the laser is off the n-th 
particle ( 1)off onNτ τ= − ⋅ . The ratio between onτ  and offτ  also defines the effective, i.e. time-
averaged strength of each optical trap. Time-averaged, effective optical forces will be further 
explained in the next section. 

Extracting the trajectory of a single particle. The position signals as e.g. Sz(t) ≈gz ⋅ bz(t) 
shown in Fig. 2(b) are governed by the Brownian motion of the optically trapped particles. 
This motion can be described by a stochastic equation of motion, the Langevin equation, 
where the x-component reads: 

 ( ), , , ,( ) , ( ) ( )n x opt n x L n x thb t F x b t F tγ ⋅ + =   (5) 
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In this over-damped situation terms of inertia are neglected. , ( )n xb t  is the velocity of the n-th 
particle diffusing in x-direction. The drag coefficient for spherical particles derived from 
stokes law is 6 ( )T Rγ πη= , with temperature T dependent viscosity η  and the radius of the 
particle R. Fth is the thermal force, which is discussed later in this paper and Fopt,n,x is the 
optical force in x-direction of the n-th optical trap. This trapping force vanishes for a position 
b0n , which defines the trap center, such that Fopt,n (b0n) = 0, where b0n = 0 in x-direction. 

The position and signal fluctuations become visible in Fig. 2(c) and Fig. 2(d). Each 
particle has its own trajectory with time sequence tn = i⋅ τscan + n⋅ τon and is sampled in the 
time interval τscan = N/ fAOD. The period onτ is in the range of some µs and represents 2 times 
the period, over which a mean position is measured (see Fig. 2(c)). These average values, 
indicated as red markers , 1, 2i i i+ + for subsequent points in time, constitute the position 
trajectory , ( )n j nS t of the n-th particle in direction j = (x,y,z) 

 
,

3 /4

, , , ,
/ 4

( )

1( ) ( ) ( )
/ 2

n on

n on

n j scan on

t

n j n n j n n j n j
on t

S i n

S t S t t dt g b t
τ

τ

τ τ

τ

+

+

⋅ + ⋅

′ ′= = ⋅ + = ⋅∫
  (6) 

In our case, a constant offset of 8µs between the desired x-y position of the laser 
( ( ), ( )L Lx t y t ) and the QPD signals arises because of the time the acoustic wave has to 
propagate through the Bragg-cell of the AOD. This temporal offset is already corrected in 
(Fig. 2(b)). Since the beam deflection frequency we chose for all experiments was fAOD = 
50 kHz, the laser remained for onτ ≈ 20µs at every bead and returned after τscan = 180µs. At a 
detector sample rate of fdet = 1 MHz, onτ corresponds to 20 sample points. From these, we 
extracted the mean value of the 10 centered sample points over a time interval of onτ / 2 as 
illustrated by Fig. 2(c) and indicated in Eq. (6). The other ten points in every period are 
discarded because the peaks that arise from the beam steering via the AOD falsify the position 
of the bead. Taking the average of 10 points of a particle diffusing with e.g. a diffusion 
constant D ≈ 0.5µm2/s, this effectively suppresses diffusion lengths of about √〈bj

2〉 = (2⋅kBT/γ ⋅ 
τon/2)1/2 ≈ (1µm2/s ⋅10µs)1/2 ≈ 3nm, which are negligibly small. This averaging effect occurs 
with any standard detector with an integration time of 10µs and a sampling rate of (180µs)−1 = 
5.5 kHz. Finally it is important to emphasize, that the tracking precision is the same as for 
standard BFP interferometry, which is between 1 and 5 nm in all 3 directions [24]. 
  

4. Parallelized force and position calibration 

In this section we briefly recapitulate how to calibrate a sphere in a static point trap. From this 
we can derive the change in forces and calibration constants for N particles in N time-
multiplexed traps. 

Calibration of optical tweezers means to determine the proportionality factor κj (trap 
stiffness) in the linear range of the optical force Fj ≈ κj ⋅ bj as a function of particle 
displacement bj in all three directions j = x,y,z. Depending on the calibration method [30], 
very often also the detection system (particle tracking system) needs to be calibrated, such that 
we seek the detector sensitivity gj in the linear signal range Sj ≈ gj ⋅ bj as introduced in Eq. (2). 

Force calibration of a static point trap. When using the popular Langevin method for 
calibrating both the trap and the detector, the equipartition theorem is necessary, which relates 
the thermal energy to the degrees of freedom of a particle at thermal equilibrium. For a 
particle trapped in a harmonic potential with stiffness κ j  one finds for the mean square 
displacement 〈 2

jb 〉 2
jσ=  of the particle: 
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 2
j j Bb k Tκ ⋅ =   (7) 

The trap stiffness κ j  is the characteristic quantity for a particle diffusing in a harmonic 
optical trapping potential V(bj), with a potential depth of several times the thermal energy 

Bk T . Provided γ is known, κj is obtained via the auto-correlation time τj = γ / κj, which can be 
determined easily from a fit to the exponentially decaying auto-correlation function AC(τ) of 
the signal trajectory, 

 ( )( ) ( ) ( ) ( ) ( )2

jAC  exp / , /sig
j j j j j jS t S t S t τ σ τ κ γ κ γ τ= ⋅ + = ⋅ − ⋅ =   (8) 

As a rule of thumb, the sampling interval τscan should be least m ≈ 5 times shorter than the 
auto-correlation time τj ≈ m⋅τscan of the trap, to enable a reliable exponential fit to Eq. (8). 

Position distribution. The variance 〈 2
jb 〉 2

jσ=  of the position distribution in Eq. (7) can be 
determined from the width of the resulting particle`s Gaussian probability density distribution 
(PDF) ( )0( ) exp ( ) /  j j Bp b p V b k T= ⋅ − , if the system is in thermal equilibrium: 

 ( ) ( )2 21 1
0 02 2

2( )  exp /  exp / =j j j B j jp b p k T pb bκ σ≈ ⋅ − ⋅ −   (9) 

The PDF or approximated, the position histogram, has a Gaussian shape in all three spatial 
directions. In the next section, it will be discussed, how the optical forces and the width of the 
PDF effectively change, when the optical potential is V(bj) = 0 during the time τoff when the 
focus is off the particle. Under the condition that the restoring forces are linear time and then 
independent of τoff, the shape of the PDF (histogram) remains Gaussian for a time-multiplexed 
trap as pointed out by Fig. 3, which shows 9 x 3 point clouds from position fluctuations of 9 
spheres, which were trapped and tracked in parallel. 

 
Fig. 3. Projections of particle trajectories measured in parallel in a point cloud representation. 
Projections are shown in x-, y- and z-direction for all 9 particles trajectories. The symmetric 
shape and nearly identical extensions of the clouds reflect the well-defined adjustment of 
individual trapping strengths in the trap array. All glass spheres have a diameter of 1.16µm. 
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Detector calibration of a static and a multiplexed trap. Since not only Sj and bj are 
proportional to each other, but also the standard deviations of the signal PDF sig

jσ and the 
position PDF jσ , i.e. sig

j j jgσ σ= ⋅ , we end up with the detector sensitivity gj in direction     
j = x,y,z: 

 
sig
j jsig

j j
Bj

g
k T

σ κ
σ

σ
= = ⋅   (10) 

Equation (10) is standard when finding the detector sensitivity in (V/µm) via the Langevin 
calibration method and provides the exact position bj, as long as the laser power and the trap 
stiffness κj do not change over the on-time τon. In the following, it will be shown that Eq. (10) 
is also valid for a time-multiplexed trapping and tracking system. 

The question to be discussed is how the optical force, the potential and the PDF change, 
when the system is out of equilibrium, specifically when the laser beam is not at the particle 
during the time period τoff and only applies forces during the period τon. 

Theoretical estimate of the effective trap stiffness. The optical force on a small particle can 
be estimated more easily if scattering forces can be neglected and gradient forces dominate. If 
we assume an intensity distribution in the focus |Ei(x)|2 = I(x) = I0⋅ exp(-x2/Δx

2)) in the lateral 
direction with a full width half maximum (FWHM) Δx = 0.5⋅λ/NA in the focus defined by the 
NA of the trapping lens, the gradient force Fgrad(bx) of a point trap can be approximated for 
spheres with diameter D ≤ λ as 

 
( )( )( )

( )

2
0

( ) ( ) ( ) ( )
2 2

exp /
2

x

grad x x x x x
V bead

b x

x x x x
x

n nF b I b dV I b s dV
cV cV

n I b b
c b

α α

α κ
∆

= ∇ − ⋅ = ⋅ ∇ − ⋅ ⋅

∂ ′≈ ⋅ − ∆ ≈ − ⋅
∂

∫ ∫r e r e r



  (11) 

with polarizability α ([α] = m3), with speed of light c/n in a medium with refractive index n = 
1.33 and the sphere’s shape function with s(r) = 1, if the bead radius is R > |r|, s(r) = 0 
otherwise. For small particle displacements bx in the trap center, the linear approximation Fgrad 
≈-κx⋅bx is justified. The integral in Eq. (11) corresponds to a 1D convolution along x between 
the intensity gradient of the focus ∇I(r) and the shape function of the bead s(r), ∇I(r) *x s(r), 
and thereby to a profile broadening to Δx’ ≈ Δx + 2R by roughly the diameter of the bead. 
From Eq. (11) we find the lateral stiffness of a point trap to be κx ≈ I0⋅α⋅n /(c⋅Δx’2). 

Since the center of the laser focus is at the relative position rrel(t) = (xrel(t), yrel(t), 0) the 
force Fgrad(bx-xrel) needs to be calculated at the lateral position bx-xrel. For distances |bx-xrel| 
>Δx’ such as the jump distance dx, the particle does not see the force profile and Fgrad(bx-xrel) = 
0. Inserting the time-dependent laser position of Eq. (3) into Eq. (11) we find 

 
( )2

0 2

( )
exp ( )

( , ( ))

0

x rel
x rel x

grad x rel x x

b x t
V if b x t

F b x t b

otherwise

  −∂ ′ ⋅ − − ≤ ∆  ′≈ ∂ ∆  


  (12) 

with energy V0 = I0⋅ α⋅n/c and [V0] = Nm. To determine the effective, time-averaged optical 
force acting on a particle in a time-multiplexed trap, we have to integrate over one scan period 
τscan = onτ  + offτ  = ( 1)t N t∆ + − ⋅ ∆ , 
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( )

( ) ( )

2
0
2 2

0

2( 1)
0
2 2

0

0

021( ) exp

( ) ( )21 ( ) exp
x x

t
x

eff x x
x x

const t

N t
x rel

x rel
x xd

bV
F b b dt

N t

b t x tV
b x t dt

N t

∆

= ⋅∆

− ⋅∆

′≈ >∆

=

 − 
 = − ⋅ ⋅ −   ′ ′∆ ∆ ∆   

 − 
 + − ⋅ − ⋅ −   ′ ′∆ ∆ ∆   

∫

∫







  (13) 

The second term vanishes, because it describes the case, the trap is located at one of the other 
N-1 particles (Eq. (12)). The first integrand does not depend on t and is constant. The first 
term considers the case the laser is at the particle over the period t∆ . Simplification of 
Eq. (13) results in an expression, where the effective force is a factor 1/N = τon/τscan (see 
Eq. (4)) weaker than the optical gradient force with constant laser intensity: 

 

2
0
2 2

,

21( ) exp

1 ( ) ( )
x x

x
eff x x

x x

b
on

grad x grad x x eff x
on off

V b
F b b

N

F b F b b
N

τ
κ

τ τ

′∆

   
= − ⋅ ⋅ −   ′ ′∆ ∆   

= ⋅ = ⋅ ≈ − ⋅
+



  (14) 

This result is intuitive, but it should be mentioned that Eq. (12) holds also for small distances 
dx, i.e. where adjacent traps overlap and the force distributions become more complicated. The 
force slope is approximated linearly around its center. The effective trap stiffness for the time-
multiplexed trap (with constant jumps Δt) is obtained as 

 0
2

1 on
eff

eff on off x

I n
N c

τ αγκ κ
τ τ τ

= = ⋅ = ⋅
′+ ⋅ ∆

  (15) 

The time τon the laser remains at one specific trap position can be precisely selected. 
According to Eq. (15) the effective trap stiffnesses can be controlled by the resting time τon 
and the laser intensity Ι0. For τoff > τon the stiffness κeff can be kept constant, if the ratio I0 / τoff 
is kept constant. 

Invariance of the detector sensitivity. Inserting Eq. (15) into Eq. (9) we find a PDF of the 
trapped particle broadened by a factor N, 

 ( )21
0 2

2
, ,( )   exp / andj jeff eff j eff j jp b p b Nσ σ σ≈ ⋅ − = ⋅   (16) 

Inserting Eq. (15) into Eq. (10), which describes the detector calibration, we find that the time 
averaged detector sensitivity , ,/ ( ) / ( )sig sig

j eff j eff j j jg N Nσ σ σ σ= = ⋅ ⋅  remains the same 
since both histograms widths increase by a factor √Ν. The invariance of the detector 
sensitivity has been described already above. 

Laser intensity and scan frequency. In frequency domain, the diffusion of an optically 
trapped particle can be described by its power-spectral density PSD(ω) = | ( )x ω |2 = |FT[x(t)]|2 
FT[AC{x(t)}], FT[] = Fourier-transform, AC{} = Auto-correlation [24]. Since the particle's 
PSD has a Lorentzian characteristic, confined diffusion can be technically described by a low-
pass filter with corner frequency 01/cf τ= defined by the strength of the optical trap. Particles 
that are scanned and tracked with frequencies 1/scan cscanf fτ >= can be calibrated correctly 
inside their traps. i.e. are not affected by the beam multiplexing. Therefore the minimum 
scanning frequency 1 / ( )scan on offf τ τ= +  can be estimated relative to the AOD-frequency, the 
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number of trapped particles, a factor q and the corner-frequency /cf κ γ=  of the optical traps 
with stiffness κ: 

 0
1 or /AOD

scan c scan
on off

f
f q f q

N
τ τ

τ τ
= = ≥ ⋅ ≤

+
  (17) 

From a combination of Brownian dynamics simulations and optical force simulations [31], we 
found the factor to be minimal q = fscan / fc ≥ 5. Therefore the scan rate was chosen to be 5 
times larger than the trap’s corner frequency in all experiments, except of the experiment 
described in Fig. 5. As shown, the corner frequency cf  or trap stiffness κ is proportional to 
the laser intensity and to the ratio of /on offτ τ . On the one hand the traps should not be too 
stiff, to ensure 5⋅fc ≤ fscan, on the other hand, the trap should not be too soft, to avoid diffusion 
of the particle out of the linear tracking regime [29].     
    

5. Experimental results 

We performed trapping and tracking experiments in an arrangement as described by Fig. 1. 
More precisely, we put four 1.16µm sized and five 0.62µm sized glass particles into an 
equally spaced nine trap arrangement with trap stiffnesses recursively calibrated such that the 
mean intensity of the z-signal was constant for all traps for better comparability. We recorded 
the position signals 25 times for 30 seconds and processed the raw-data (see Fig. 2(c)) to 
obtain the detector sensitivities gj and the effective trap stiffnesses κj,eff (j = x,y,z). The 
calculated mean value and the standard deviation for the calibration parameters are shown in 
Fig. 4. On the one hand, the different levels of κj and gj for the two bead diameters are clearly 
visible in all directions. On the other hand, the small relative deviations for one nominal bead 
size show the well-aligned trap arrangement. 

 
Fig. 4. Measured trap stiffnesses κj (a,c) and detector sensitivities gj (b,d) (j = x,y,z) from four 
1.16µm (big markers) and five 0.62µm (small markers) trapped glass beads. The axial 
components are in the top row, the lateral in the bottom row. The markers are colored in red for 
the x-, in green for the y- and in blue for the z-direction. a,c) The trap stiffnesses are the same 
of each bead size in all three directions. Differences between x- and y- direction result from the 
polarization of the incident field. b,d) The detector sensitivities clearly reveal the two different 
bead radii in all three directions.  
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Small deviations are likely due to variations in AOD transmission (phase and amplitude) 
and of the bead size, where a constant radius R and drag γ = 6πηR = κj,eff ⋅τj,eff was assumed. 
The small error bars indicate, that the measured detector sensitivities and trap stiffnesses are 
well reproducible over time and beam deflection area. 

As predicted and measured in references [31,32] the trap stiffnesses in the y-direction are 
weaker κy < κx than in x-direction, since y is the direction of the polarization of the incident 
field. This polarization effect becomes smaller, when the diameter of the sphere reaches the 
diameter of the focus. However, differences in κj and gj can be even much bigger, since each 
trap is calibrated individually and would deliver the same result for force measurements. 

 
Fig. 5. (a) Increase in the effective auto-correlation (AC) time (left) and the rms-displacement 
of the particle (right). The AC-time increases linearly with the off-time τoff = N⋅τon (number of 
traps N = 0..120). (b) The experimental data can be well approximated by the particle’s 
expected free diffusion.      
  

By a further experiment we show, that the theory of effective, time-averaged trap 
stiffnesses is valid for numerous trapped particles. Therefore a trap arrangement with 120 
virtual traps was established, although only one particle was trapped. The time τon = 20µs the 
laser remains at position of the trapped particle is kept constant, whereas the time τoff is 
increased linearly after every measurement with time increment Δt = τon. The auto-correlation 
(AC) times predicted by Eq. (15) and obtained by the correlation analysis reveal in Fig. 5 left 
the expected proportionality between the effective AC time τeff and the off-time τoff . For τoff = 
0 we find τeff = τx = γ / κx and for a number of N traps τeff increases linearly: 

 ( ), 1 / 2eff x off on x x offNτ τ τ τ τ τ= + ⋅ = ⋅ ≈ ⋅   (18) 

During τoff the freely diffusing particle has a mean square displacement MSDfree(τoff⋅) = σ2
free = 

2⋅kBT/γ ⋅τoff⋅. Assuming that the particle diffuses freely over N parts of the scan time and sees 
the trapping potential for only 1 part, free diffusion will mainly determine the width of the 
effective, time-averaged PDF, i.e. σfree(τoff⋅) ≈ σeff (τoff⋅) or 2τoff ⋅kBT/γ ≈ τeff ⋅kBT/γ. This behavior 
is clearly visible in Fig. 5, where the theoretical free diffusion MSDfree(τoff⋅) = 2⋅kBT/γ ⋅τoff is 
plotted with τeff = 2⋅τoff . For the width σeff = (kBT/κeff)1/2 of the PDF, which remains of Gaussian 
shape, we find: 

 , , / 1 /eff x B eff x off on x xk T Nσ τ γ τ τ σ σ= ⋅ = + ⋅ = ⋅   (19) 

Here σx = (kBT/κx)1/2 ≈ 5nm is obtained from a strong static point trap with κx = 260pN/µm and 
τx = 36µs. The measurement time was 10s each for every off-time τoff⋅. 

In the example presented in Fig. 3 with N = 9 beads with each τx = 0.25ms AC-time this 
corresponds to τoff = (9-1)⋅τon = 160µs, σfree = 11nm and an increase in PDF width by a factor 
(1 + 9/1)1/2 ≈ 3.16. 
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6. Hydrodynamic coupling of particles in a two-dimensional array 

As mentioned in the introduction, multi-particle tracking allows measuring force fields and 
physical coupling between confined areas in a complex soft-matter environment. In this 
section we show, how nine trapped particles change their temporal diffusion and fluctuation 
behavior due to hydrodynamic coupling over distances of several particle radii. 

The diffusion behavior of N coupled particles can be described by N Langevin equations 
, ,( ) ( ) ( )mn n opt n n th nt t⋅ + =γ r F r F

 F as introduced by Eq. (5), which are coupled by the elements 
mnγ
 of the viscous drag tensor γ . For the sake of convenience, we write the position of the    
n-th sphere as rn(t), instead of bn(t), and it’s velocity as ( ) ( )n nt t=v r . By further assuming 
linear effective optical forces Fopt,n(xn) ≈ κnm⋅xn for all trapped spheres, the system of Langevin 
equations reads: 

 

,111 12 1 1 11 1

,221 22 2 2 22 2

,1 2

( )( ) ( ) ( ) ( ) 0 0 ( )
( )( ) ( ) ( ) ( ) 0 0 ( )

( ) ( ) ( ) ( ) 0 0 ( )

thn

thn

thm m mn n nn n

F tr r r t t
F tr r r t t

Fr r r t t

κ
κ

κ

       
       
       ⋅ + ⋅ =
       
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  
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( )n t

 
 
 
 
  
   (20) 

The viscous drag matrix γ  with elements mnγ


 is inverse to the hydrodynamic mobility matrix 
μ with elements mnμ . For a single spherical particle it simply reads µ0 = µnn = 1/γnn = (6πηR)−1. 

In principle and according to Eq. (20) the viscous drag of each bead is influenced by all 
other (n-1) beads, such that the velocity dependent friction force of the m-th bead is 

( )mn mn
t⋅∑ γ r

 . Since such a system is far too complex to describe, we reduce the complexity 
by considering first the hydrodynamic interaction between two adjacent spheres. For two 
isolated spheres at positions rn and rm in a distance r = |r| = |rn-rm| to each other, the distance 
dependent mobility ( )mn rμ is a tensor itself and can be split up in components for motions 
parallel and perpendicular to the center-to-center axis [33]: 

 2 2( ) ( ) ( ) 1mn mn mnr µ r µ r
r r

⊥⊗ ⊗ = ⋅ + ⋅ − 
 

r r r rµ 

   (21) 

Here ⊗ denotes the outer product. For the simultaneous motion of both spheres at distances r 
> R one finds for the first order approximation after a transform into center-of-mass 
coordinates 31

02 2( ) (1 / )≈ ⋅ − ⋅

relµ r µ R r  and 31
02 4( ) (1 / )relµ r µ R r⊥ ≈ ⋅ − ⋅  for relative motions 

between the beads. For the collective motion of both spheres one finds 
31

02 2( ) (1 / )colµ r µ R r≈ ⋅ + ⋅ and 31
02 4( ) (1 / )colµ r µ R r⊥ ≈ ⋅ + ⋅ . Usually, relative diffusion between 

two spheres, expressed by the diffusion constant Drel = µrel⋅kBT, is slowed down with 
decreasing distance r, whereas collective diffusion is accelerated with decreasing r via Dcol = 
µcol ⋅kBT [34]. Typically, this two bead interaction is investigated by cross-correlations 

( ) , ,( ) ( )i i n i mCC x t x tτ τ= ⋅ +  of the positions of two spheres as a function of time delay τ [35] 
[36]. This reads in directions i = x,y,z: 

 ( ) ( )0 0
3 3
2 2(1 / ) (1 / )

2
i iB

i
i

µ R r µ R rk TCC e eτ κ τ κτ
κ

⋅ ⋅− + − −= ⋅ −   (22) 

 ( ) ( )0 0
3 3
4 4(1 / ) (1 / )

2
i iB

i
i

µ R r µ R rk TCC e eτ κ τ κτ
κ

⋅ ⋅⊥ − + − −= ⋅ −   (23) 

In these expression we have assumed to have two identical spheres in two identical traps with 
stiffnesses κi = κi,nn. The cross-correlations are expressed by the difference of the auto-
correlation functions of the collective movement with mobility µrel and of the relative 
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movements with mobility µcol. Evaluating Eqs. (22) and (23) results in a negative cross-
correlation curve, where col i rel iµ µe eτ κ τ κ− −≤ , meaning that correlated fluctuations relax faster 
than anti-correlated fluctuations because of a larger mobility µcol > µrel of the collective 
motion. 

 
Fig. 6. Cross-correlation functions CC(τ) for two 1.16µm glass spheres (marked with red 
circles) in various distances r = dy to each other. (a) The strongest coupling is for longitudinal 
motions CCyy(τ), weaker coupling for transversal motions CCxx(τ) (b) and negligible small 
coupling for motions in perpendicular directions CCxy(τ) (c). Coupling is strongest for short 
distances dy = 2µm with a time delay of τmin ≈ 2ms. The particle arrangement is quadratic as 
pointed out in the insets.      
  

Figure 6(a) shows the position cross-correlation of two adjacent spheres in longitudinal 
direction (Eq. (22)) for 4 different distances r = dy in the 3x3 arrangement of Fig. 1. Figure 
6(b) shows the position cross-correlation in transversal direction (Eq. (23)) and Fig. 6(c) 
shows the cross- correlation in perpendicular directions. To obtain this data, the trajectories 
xi,n(t) of the n ≤ 9 particles in directions i = x,y,z have been tracked in parallel as described 
above. Figure 6(a) reveals, that the correlation strength is the stronger the shorter the distance 
between the spheres. For two isolated spheres, this effect was already shown in references 
[35], [36] and [37]. Meiners and Quake [35] also pointed out that the delay time, i.e. the 
minimum position τmin increases with decreasing distance (see dashed line in Fig. 6(a)), which 
is not intuitive and which is not further discussed here. In Fig. 6(b) it can be seen that in our 
case the coupling in transverse directions is about a factor 3 weaker than in longitudinal 
directions, whereas coupling in perpendicular directions is negligible (Fig. 6(c)). The 
maximum coupling strength is reached after half the time for the transversal motions as for the 
longitudinal motions. 

Besides the coupling due to the three types of directional motions presented in Fig. 6, we 
investigate the case of a mediator bead between two trapped spheres. By plotting the position 
cross-correlation between two 1.16µm glass spheres in a distance of dy = 4µm without an 
intermediate bead, we find a pronounced dip at a time delay of τmin = τ4 = 2ms as shown in 
Fig. 7. Placing a third bead in between, such that the distances are 2µm + 2µm, we find a 
reduction of the interaction strength of the two outer beads by a factor of 3, but a remarkably 
decrease in the time delay by a factor of τ4 /τ22 = 2. In other words: although a mediator bead 
damps the position fluctuations and the hydrodynamic coupling between two spheres, the 
maximum coupling between the outer spheres occurs much earlier. 
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Fig. 7. (Color online) Cross-correlation functions CC(τ) for two beads in a distance dy = 4µm 
to each other with and without mediator bead in between. The longitudinal coupling strength is 
increased without the mediator bead, but the delay time is reduced with mediator bead. The 
auto-correlation time of a single trapped bead was τy = 7 ms, and τy = 5 ms, respectively. 
  

A well-known result in colloidal physics is that the diffusion of spheres change in 
dependence of the volume concentration of surrounding beads [38], where the long-time 
diffusion coefficient as a function of the volume fraction φ = a2/ r2 between bead radius a and 
bead distance r is estimated. As shown in Dhont [33], the normalized coefficient D’ = D(r) / 
D(r→∞) of free diffusion decays as 

short
D′  = 1 - 1.7⋅φ for short times and 

long
D′  = 1 - 2.1⋅φ for 

long times. Figure 8 left illustrates that the normalized diffusion coefficient drops linearly 
according to 

trap
D′  = 1 – 0.9⋅φ, and is therefore less sensitive to neighbored beads on short time 

scales τj << γ/κj as predicted. For time scales τj ≥ γ/κj the auto-correlation decay nearly 
exponentially. The decay is weaker than predicted by theory, since in our experimental 
arrangement only interactions in 2 dimensions and for next neighbors are incorporated. This 
decay is the weaker, the shorter the distances and the stronger the hydrodynamic coupling to 
the other beads. At a distance of r = 2µm = 1.7⋅a, we find D(r) = kBT/γ(r) = 0.75⋅D(r→∞), i.e. 
diffusion drops down by 25% due to the coupling to the beads. 

 
Fig. 8. Self-diffusion of the center bead as a function of distance to the beads. (a) Decay of the 
normalized diffusion coefficient as a function of volume ratio corresponding to decreasing 
distances dy. (b) Normalized auto-correlation function AC(τ) of the center bead for 4 bead to 
bead distances r = dy. 
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7. Summary and conclusions 

In this paper we have presented a novel 3D multi-particle tracking system with 20µs time 
resolution. The tracking principle and precision of 1-5nm is the same as for the established 
single beam systems using back-focal-plane (BFP) interferometry. Due to time-multiplexing 
with a two-axis acousto-optic deflector (AOD) the resting times at each particle are short 
(∼20µs), but have no influence on the tracking linearity and orthogonality of the x-, y- and z-
position signals. The calibration of the traps and the position signals, i.e. determining the 
constants κj,n and gj,n (j = x,y,z) for each particle and laser focus with number n, is possible 
independently of local laser power, particle size and refractive index. Applying the established 
Langevin method for all Nx3 constituted traces (N = 9 in our case), the Nx3 calibration 
constants κi,n and gi,n can be obtained within seconds. This was shown for mixture of 0.62µm 
and 1.16µm glass beads with high reproducibility. The aforementioned features make our 
tracking system superior to any existing tracking system for the frequent case, that particles 
are trapped in a single z-plane. An extension of this work for trapping numerous particles in 
different z-planes using spatial light modulators in addition is in preparation. 

We have shown theoretically and by experiments that effective, time-averaged trapping 
potentials arise, when the laser is on one particle during τon and off the particle during τoff. The 
effective trap stiffness can be controlled generally by the ratio between the periods τon and τoff, 
and, in addition for each trap individually by the laser power transmitted through the AOD. 

We used the fast tracking system to record 27 position traces of nine trapped 1.16µm glass 
spheres, which represent a well-sized probe for many biological applications. From these 
traces we determined cross-correlations CC(τ) between selected pairs of particles. These 
allowed us identifying various hydrodynamic coupling strengths and times between two 
spheres from the minima of the resulting CC(τ)-curves. On the one hand we found similar 
results as those published by others for two isolated spheres, on the other hand we found 
unexpected hydrodynamic coupling between two spheres if a mediating sphere was in 
between. In addition we found that self-diffusion of the centered bead decreases linearly with 
decreasing distance to the eight surrounding beads. Without doubt, more experiments, more 
advanced theoretical approaches and different analysis are required to better understand many 
particle hydrodynamic coupling in regular and irregular particle arrangements. This is beyond 
the scope of this article. 

The system principles presented here should be easily adaptable to standard trapping and 
tracking systems, which use BFP-interferometry and beam steering devices. The system 
features we presented will make it possible to not only measure 3D force fields, but also to 
steer defined forces at each point individually. We think that this ability will open doors to a 
variety of new exciting experiments in biophysics and related disciplines. 

Acknowledgment 

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), grant numbers RO 
3615/1 and RO 3615/2. The authors thank Matthias Koch for a thorough of reading the 
manuscript. 

#151129 - $15.00 USD Received 14 Jul 2011; revised 16 Aug 2011; accepted 22 Aug 2011; published 19 Oct 2011
(C) 2011 OSA 24 October 2011 / Vol. 19,  No. 22 / OPTICS EXPRESS  21642




