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Linear quadratic control problem

Linear Quadratic Control Problem:

N—1
. 1 / / Q@n Srly Xn / 11 | Xn
min (5 b oh] [sn Ro |un] Tl il [y ] Fn )+
n=
1,
+§XNPXN + pxy + pn
S.t. Xp+1 = AnXp + Bpup + by
X0 = Xo
General formulation:
» quadratic & linear cost function
» affine dynamic
> time variant matrices

Subproblem in IP methods
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Linear quadratic control problem

Linear Quadratic Control Problem:

N-1
. 1 / Qn 5,/1 Xn / Xn
min E (5 [x: ul] [Sn RJ [un] + [a, s |:Un:| —l—pn) +

n=0

1,
+§XNPXN + pxn + pn
S.t. Xpty1 = ApXnp + Bpun + by

X0 :)_<0

Problem size:
» n, states number
> n, inputs number

» N horizon length
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» the LQ control problem is an equality constrained QP
m@in %H'HH +Ho
s.it. Ghl=g

» KKT necessary (and sufficient with mild assumptions)

conditions [_HG 0y } m - Lﬂ

» KKT matrix symmetric, sparse and structured, of size
N(2ny + ny)
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Structure of the KKT system

» symmetric and indefinite: can be solved using LDL
factorization in O(N3(2n, + n,)3) flops (naive approach)
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Solution of the KKT system - Riccati recursion

The Riccati recursion is a factorization of the KKT matrix
rewritten in the form [Rao, Wright and Rawlings (1998)]

_Ro Bé ] _UO_ _50_
By —1 A1 bo
- Q1 S5 A X1 a1

51 Rl Bi uy S1

A B —1 M| =— |k

-1 Q S A X2 92

51 Rl Bi u» Cy)

Ay B —I] [ 23 by

L -1 Pl Lxs] Lp.

» non-condensed approach exploiting the KKT matrix structure
» cost O(N(ny + n,)3)
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Solution of the KKT system - Condensing

» state elimination

x=Tu+A"'h
where
/ 1B, By
Fr=|-A I B; = | A1B, B,
—Ay | B, AA1By AB1 B

» only inputs as optimization variables
Ho=f
where

H=R+T'S' +Sr+1'Qr
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Solution of the KKT system - Condensing

> the large, sparse and structured KKT system is rewritten into
a small and dense system of linear equations

> this system has size Nn, and it is positive definite

> it is traditionally solved using Cholesky factorization and
forward and backward substitution: the cost is O(N3u3) flops

> is there still structure left in the small, dense condensed
system? yes
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Cholesky factorization

» 2 x 2 block version of the algorithm

Hi1  Hiz / [Uil } [Ull U12]
H = = U U = =
{Hn sz] Up Ux Uz
_ |:U{1U11 U£1U12 :|
UjoUin Uy Uao + Uiy Uno

» We can apply the procedure recursively:

1. factorize Hy; to get Uiq

2. solve Ul_lTng to get Ui

3. correct Hy to get H22~— U:{2 U = Uéz Uxpp=H>,

4. repeat recursively on Ha;
» Cost:

n . 2i(i—1) _ n 2 _ n(n+1)(2n+1) 1.3

ST (- 1)+ 2D — s g2 alndt)@et) o 1,

» Notice that the factorization starts from the top-left block
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Structure of the condensed matrix

» for the moment let us assume that S, = 0 (only for clarity of
presentation)

» for N = 3, the condensed matrix looks already pretty

complicated
Ry + B{@Q1By + BLAL QA1 By + B{ATASP3AAI By BLALQaBy + B{ALALP3A By B{ATALP3B,
BJ Q241 By + B{ Ay P3 A2 A1 By R+ B{Q2B1 + BjA)PsAyB1  BiA}P3B)
By P3A2A1 By BjP3A2B; Ry + B3 P3B;

» complex structure at the top-left corner
> simple structure at the bottom-right corner

> what if we permute the matrix?
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Factorization of the permuted condensed matrix

> Let us reverse all columns and rows, and apply Cholesky
factorization (for N = 2)

Ry + B, P,B; B, P,A; By
BiAIP3B1 Ry + ByQiBy + BLA; P2A By

» factorize Ry + BjP>B1 = Uj; U1

> solve Upp = UﬁT(B{P2A1Bo)

> correct Ry + ByQ1Bo + ByAP2A1Boy — Ugp Ura=Ro + ByP1Bo
where Py = Q1 4+ A{P,A1 — A{P2Bi(Ry + B{P2B1) 1B P,A;

» that is the classical Riccati recusion
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Factorization of the permuted condensed matrix

[D. Axehill, M. Morari (2012)]

» Riccati recursion can be used to compute the factorization of
the dense Hessian matrix

> the factorized system is solved using standard backward and
forward substitutions

» Riccati recursion for the computation of the matrices P,: cost
O(N(nx + ”U)3)
» construction of the Cholesky factor of H: O(N?)

» no O(N3) operations, but the overall algorithm is always
slower that Riccati recursion

> can we get an algorithm with better complexity? yes
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Structure exposed

For N = 3, we can write the permuted matrix as

Ry + ByP3B, (B3 P3A2)By (B3P3A2)A1 By
* R1 + B]{ @By + BjA,P3A2B; (B] QA1 + B{AyP3A2A1) By =
* * Ry + By @By + B{AL QA1 By + B{AL AL P3 Ay AL By

D, MB, MyA;By
= * D1 Ml Bo
ES * Do

» dense matrix, but now structure is exposed

> is Cholesky factorization preserving this structure? yes
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Structure exposed - factorization - 1st row

» factorization

* D1 M1Bo
* * Do
> solution (key idea: update of one single matrix = no O(N?) terms))

[U2 Uy "TMyBy Uy TMhA 30]

[UQ MzBl M2A1 BO]

* Dy M, By
* * Do

> correction (key idea: the correction the block Hax is equivalent to the
correction of the matrix @2 = no O(N?) terms)

U LB1 LA1Bo
% Dl M1Bo
* * Do
> @1 =D — B{LI2L2B:[ =R+ B{(Qz — L/2L2)Bl + B]I_A/2P3A281
b Wy = My — BlLL oAy = BJ(Qs — L4Lo)Ay + BlALPsAsAy
> DO = DO — B(/)AllleLzA]_ Bo =
Ry + B(I)QlBo + B(/)All(Q2 — L/2L2)AlBo + BéAllA,2P3A2AlBO
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Structure exposed - factorization - 2nd row

» factorization
U MyBy MyA By
* U1 Ml B()
* * D()

> solution
U LB L,A1By

* Uy Uy T Ml By
* * Do

> correction
U LBy LyA1Bg
* Ul L];BO
* * Do

» Dy = Dy — B{LyL1By = Ry + B4(Q1 — Ly L1)By +
BAL(Q, — L, L5)A1 By + ByA; Ay P3 Ay Ay By
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Structure exposed - factorization - 3rd row

» factorization only

U LBy LbA1Bg
U == U1 L1 Bo
Uo

> key idea: the matrix U is build and factorized on-the-fly, once
the corrected @,, matrices are computed

» can this structure be exploited also to solve the factorized

system
U = —f

using forward and backward substitution? yes
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Structure exposed - system solution

» forward substitution

V2 Uy " (g2)
vi| =~ Uy (g1 + BiLyw)
Vo Uy "(go + BYA, Lhyva + B L)

» backward substitution

u» U2_1(V2 — LzBlul — LzAlBo)
up | = Ul_l(V]_ - L]_B()U())
Uo Uy *(v)

> key idea: we do not even need to explicitly build U, we just
need to compute the matrices U, and L, (and thus in turn D,
and M,)
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Structure exposed - cost

» the cost of the factorization is then linear in N
%Nni + (N = 1)nen? + (N — 1)n2n,

plus the cost to build D, and M,
» two approaches to build D, and M,

1. avoid O(N?) operations, at the cost of higher complexity in n,
2. avoid O(n3) operations, at the cost of higher complexity in N

» the most efficient approach depends on the problem size
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Build the matrix - 1st approach

Riccati-like solver: use a recursion to keep a constant number of
operations per stage

Dy = Ry + (B.,Pni1)By
My = Sp+ (B.Ppi1)An

where

Pn+1 = Q:;_H + A/nPn—i-lAn = (Qn—i—l - L/nLn) + A/r,Pn+1An

» the computation of A, P,1A, is cubic in ny
> total cost (build+factorize): N(%n3 +4n2n, + 2n.n% + 1n3)
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Build the matrix - 2nd approach

Pure condensing solver: always multiply matrices of size n, X ny to
matrices of size n, X n,

A

b= B dlag( _T(Q* . Iﬁ))

+
M=35+ (diag(A_T(Q* . F))), - A
where
0 A
A= 0 A
0

» in an IP method, = A1.B canbe computed off-line
» Q-1 and A=T(Q*) cost N2n2n,
> total cost (build+factorize): 2N2n2n, + 3Nnyn? + £ Nn}
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Numerical results # 1

N =30

> ny varying

» Riccati O(n?) vs
Condensing O(n?)

» OpenBLAS

time [s]

Cond BLAS —x—
Ric BLAS ——

1 1.2 1.4 1.6 1.8 2 2.2 2.4

45 L L L L L L
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Numerical results # 1

> Ny varying

» Riccati O(n3) vs
Condensing O(n?)

> OpenBLAS vs
HPMPC
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time [s]

Cond BLAS —<— 7

Ric BLAS —o—
Cond HPMPC
\Ric HPMPG —&—

1.8 2 2.2

2.4




Numerical results # 2

n, =50
-1 T
15 b
» N varying 2r ]
» Riccati O(N) vs g sl ]
Condensing O(N?) i
sl ]
» OpenBLAS
a5t ]
Cond BLAS —x—
4 . . . . . , RicBLAS —o— |
1 1.2 1.4 16 18 2 22 24
N
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Numerical results # 2

n, =50

> N varying

» Riccati O(N) vs
Condensing O(N?)

> OpenBLAS vs N
HPMPC

time [s]

-25

Cond BLAS —»—
Ric BLAS —5—
Cond HPMPC
Ric HPMPC —=— |

1 12 14 1.6 1.8 2 22 24
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Conclusion

» structure-exploiting factorization of the condensed Hessian

v

factorization cost is linear in N, plus the cost to build D, and M,

> 1st approach: Riccati-like solver, cost linear in N and cubic in n,

v

2nd approach: pure condensing solver, cost quadratic in N and
quadratic in ny

Questions?
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