

Doing more with less

FORCES PRO - An Easy to Use Tool for Rapid Design of High Performance Optimal Controllers

Juan Jerez & Alex Domahidi

March 19, 2014 Embedded QP Workshop, Freiburg

embotech GmbH Physikstrasse 3 | ETL K10.1 | 8092 Zürich | Switzerland

embotech Team

Alexander Domahidi domahidi@embotech.com Juan Jerez jerez@embotech.com

- PhD in Automatic Control, ETH Zürich
- Expertise: modeling, numerical linear algebra, optimization methods
- ▶ Tools: forces.ethz.ch, ecos.ethz.ch
- Applications: electrical drive control, autonomous vehicles

- PhD in Circuit Design for Real-time Optimization, Imperial College London
- Expertise: optimization methods, numerical analysis, digital circuits, fixedpoint implementations
- Applications: aircraft control (HIL), atomic force microscopy

embote<mark>ch</mark>*

2

embotech's Vision

In 2030, optimization problems are solved on billions of devices:

Communication & Computing

- Signal decoding
- Energy management
- Beamforming

Manufacturing

- High-performance tools and machinery
- Complex movements

Automotive

- Engine control
- Hybrid drive trains
- Autonomous driving

Power systems & buildings

- Smart grids
- Distributed generation
- Use of weather data

• Why Is Optimization Not Everywhere?

Lack of computing power

- embedded platforms not powerful enough
- cost & power consumption limits

Lack of training

- most engineers not trained in optimization
- posing optimization problems and solving them require different expertise

- implementation of algorithms time consuming & requires knowledge
- numerical challenges

We make tools to address these problems

Solving the Optimization Problem

- The design space for an optimization solver for a particular optimal control implementation is very large
 - optimization re-formulation & scaling
 - algorithmic framework
 - particular algorithm variant
 - algorithm parameters
 - fixing the number of iterations
 - parallelization (platform dependent)
 - data types (platform dependent)
 - numerical linear algebra implementation (platform dependent)

Exploring this design space is very time consuming and expensive

Case Study - Aircraft Demo

	Mathworks MPC Toolbox	IBM CPLEX	FORCES PRO
Desktop Platform (Intel 2.53 GHz)	200 ms	l 6 ms	0.5 ms
Embedded Platform (ARM 0.15 GHz) ~1\$			9 ms

Feature Roadmap

embote<mark>ch</mark>*