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Benchmarking suite
Motivation

Many approaches for solving QP problems that arise in MPC
applications

• more than one algorithms for each approach

• performance often illustrated on one or two academic
examples

Practitioners often face the challenge to:

• find the best suited algorithm for a specific MPC application

• assess whether there is a single approach that satisfies
performance requirements over a given problem class

Idea: Develop a benchmarking suite to conveniently compare the
numerical performance of QP algorithms over a large variety of
MPC problems
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Benchmarking suite
Coupled solvers

Interfaced existing software and prototyped algorithms from
literature
• Active set methods

• qpOASES [1]
• quadprog

• Interior point methods
• FORCES [2]

• Gradient Based methods
• Primal (Fast) Gradient Method [3]
• Richter’s Dual Fast Gradient Method [4]
• Bemporad’s Dual Fast Gradient Method [5]
• Gisselson’s generalized DFGM [6]

• Explicit MPC
• MPT Toolbox [7]

• Other
• ADMM [8]
• Brand’s algorithm [9]
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Benchmarking suite
Collection of problems

Benchmark problems originate from:

1. academic examples presented in publications

2. industrial examples and case studies

3. randomly generated examples

Seeking variety with respect to:

• number of inputs, states and outputs

• type of constraints

• horizon length

• open loop stability
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Benchmarking suite
General problem formulation

MPC problem formulation:
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s. t. x0 given,

xk+1 = Akxk +Bkuk + fk ∀ k ∈ {0, . . . , N − 1} ,
yk = Ckxk +Dkuk + ek ∀ k ∈ {0, . . . , N − 1} ,
y l
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k ∀ k ∈ {0, . . . , N − 1} ,
u l
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d l
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d l
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N .

• Kept general to allow easy coupling of new benchmarks
• Data stored in a structure
• Complemented by a control scenario (open or closed loop)
• Moving blocks to allow for different control horizon
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Benchmarking suite
Simulation options

Fair comparison of different solvers is not a trivial procedure

Current simulation options:
1. Solvers can stop with their own termination condition

• Applying feedback earlier can lead to better closed loop
performance

• Free resources for other processes or for low power
consumption

• Depends on tuning parameters. Difficult to compare solvers

2. Run fixed number of iterations
• In many applications the amount of time to solve the

optimization problem is fixed
• Checking the termination condition is often more expensive

than the iteration itself
• Maximum iterations of each solver should be weighted based

on its complexity

3. Stop using an a priori known optimal solution
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Benchmarking suite
Preliminary results

Simulation of unstable aircraft model [10] in closed loop
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Benchmarking suite
Preliminary results

Simulation of unstable aircraft model in closed loop
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Benchmarking suite
Preliminary results

Simulation of unstable aircraft model in closed loop
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Benchmarking suite
Preliminary results

Performance profile

• S set of solvers

• P set of problems

• tp,s time to solve problem p
with solver s

• rp,s = tp,s
min
ŝ∈S

tp,ŝ
performance

ratio

• Ps(τ) = size{p∈P:rp,s≤τ}
np

CDF of performance ratio
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Benchmarking suite
Preliminary results

Number of active constraints versus iterations on one example
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Benchmarking suite
Future work

• Extend benchmanking suite
• more benchmark problems
• new QP solvers

• Replace prototype implementations with more efficient ones

• Run simulations on embedded hardware
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