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Benchmarking suite

Motivation
Many approaches for solving QP problems that arise in MPC
applications
e more than one algorithms for each approach

e performance often illustrated on one or two academic
examples

Practitioners often face the challenge to:
e find the best suited algorithm for a specific MPC application

e assess whether there is a single approach that satisfies
performance requirements over a given problem class

Idea: Develop a benchmarking suite to conveniently compare the
numerical performance of QP algorithms over a large variety of

MPC problems
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Benchmarking suite

Coupled solvers

Interfaced existing software and prototyped algorithms from

literature
e Active set methods
e qpOASES [1]
e quadprog
Interior point methods
« FORCES [2]
Gradient Based methods
e Primal (Fast) Gradient Method [3]
e Richter's Dual Fast Gradient Method [4]
e Bemporad's Dual Fast Gradient Method [5]
o Gisselson's generalized DFGM [6]
Explicit MPC
e MPT Toolbox [7]
Other
e ADMM (8] nnn
e Brand's algorithm [9] FREPED
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Benchmarking suite
Collection of problems
Benchmark problems originate from:
1. academic examples presented in publications
2. industrial examples and case studies

3. randomly generated examples

Seeking variety with respect to:
e number of inputs, states and outputs

e type of constraints

horizon length

open loop stability
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Benchmarking suite
General problem formulation
MPC problem formulation:
N-1 P N\T , T .
win 30 () (S ) ()= (5F) (k)
+(zn—ay) P (zn—ay)

s.t. xo given,
Tpy1 = Apxp + Bruk + fi Vke{o,...,N—l},

yr = Crxr + Dypug + e VkE{O,...,N—l},
v < vk < Yp Vke{0,...,N -1},
up, < up < uf Vke{0,...,N -1},
dl, < Myyg + Ngup < df VEke{0,...,N -1},

dy < Tey < dY.

o Kept general to allow easy coupling of new benchmarks

Data stored in a structure

Complemented by a control scenario (open or closed loop) ——
Moving blocks to allow for different control horizon allanded
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Benchmarking suite

Simulation options

Fair comparison of different solvers is not a trivial procedure

Current simulation options:
1. Solvers can stop with their own termination condition

3. Stop using an a priori known optimal solution

Applying feedback earlier can lead to better closed loop
performance

Free resources for other processes or for low power
consumption

Depends on tuning parameters. Difficult to compare solvers
fixed number of iterations

In many applications the amount of time to solve the
optimization problem is fixed

Checking the termination condition is often more expensive
than the iteration itself

Maximum iterations of each solver should be weighted based

on its complexity A DD
FADD
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Benchmarking suite

Preliminary results

Simulation of unstable aircraft model [10] in closed loop
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Benchmarking suite

Preliminary results

Simulation of unstable aircraft model in closed loop
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Benchmarking suite

Preliminary results

Simulation of unstable aircraft model in closed loop
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Benchmarking suite

Preliminary results

" Performance profile on Subset of benchmarking problems
Performance profile ' A

e S set of solvers
e P set of problems -
e i, time to solve problem p

with solver s .
o T = performance d

P:S = mmin t,

ies P DGM Bemporad
. ———— DGM Richter
ratio DGM Gisselson-Bemporad|
. DGM Gisselson-Richter
A PS(T) _ size{pEP:rp <7} ‘ ‘ Ao : :
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Benchmarking suite

Preliminary results
Number of active constraints versus iterations on one example

Number of active constraints in optimal solution vs Number of iterations
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Benchmarking suite

Future work

e Extend benchmanking suite

e more benchmark problems
e new QP solvers

e Replace prototype implementations with more efficient ones

e Run simulations on embedded hardware
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