Linear Programming

Moritz Diehl
based on slides originally prepared by Sebastian Sager

August 4, 2014

Overview of talk

- Tutorial example, geometric interpretation, polyhedra
- Simplex algorithm
- Duality
- Other algorithms
- References, Software

Example: oil refining

- Refine raw oil to \mathcal{L} ight, $\boldsymbol{\mathcal { M }}$ iddle or Heavy distillates
- Two possibilities:
- A) 1 unit raw oil to $1 \mathcal{L}, 2 \mathcal{M}, 2 \mathcal{H}$
- B) 1 unit raw oil to $4 \mathcal{L}, 2 \mathcal{M}, 1 \mathcal{H}$
- Costs:
- A) 3 money units,
-B) 5 money units
- Delivery obligations: $4 \mathcal{L}, 5 \mathcal{M}, 3 \mathcal{H}$

- How can we minimize our costs and still deliver what we are expected to?

Modelling

- Introduce variables x_{1} and x_{2} : represent units of raw oil processed with procedure A) resp. B)

Modelling

- Introduce variables x_{1} and x_{2} : represent units of raw oil processed with procedure A) resp. B)
- Objective: minimize costs $\quad\left(3 x_{1}+5 x_{2}\right)$

Modelling

- Introduce variables x_{1} and x_{2} : represent units of raw oil processed with procedure A) resp. B)
- Objective: minimize costs $\quad\left(3 x_{1}+5 x_{2}\right)$
- Constraint: positiveness $\quad\left(x_{1}, x_{2} \geq 0\right)$

Modelling

- Introduce variables x_{1} and x_{2} : represent units of raw oil processed with procedure A) resp. B)
- Objective: minimize costs $\quad\left(3 x_{1}+5 x_{2}\right)$
- Constraint: positiveness $\quad\left(x_{1}, x_{2} \geq 0\right)$
- Constraint: deliver at least $4 \mathcal{L} \quad\left(1 x_{1}+4 x_{2} \geq 4\right)$

Modelling

- Introduce variables x_{1} and x_{2} : represent units of raw oil processed with procedure A) resp. B)
- Objective: minimize costs $\quad\left(3 x_{1}+5 x_{2}\right)$
- Constraint: positiveness $\quad\left(x_{1}, x_{2} \geq 0\right)$
- Constraint: deliver at least $4 \mathcal{L} \quad\left(1 x_{1}+4 x_{2} \geq 4\right)$
- Constraint: deliver at least $5 \boldsymbol{\mathcal { M }} \quad\left(2 x_{1}+2 x_{2} \geq 5\right)$

Modelling

- Introduce variables x_{1} and x_{2} : represent units of raw oil processed with procedure A) resp. B)
- Objective: minimize costs $\quad\left(3 x_{1}+5 x_{2}\right)$
- Constraint: positiveness $\quad\left(x_{1}, x_{2} \geq 0\right)$
- Constraint: deliver at least $4 \mathcal{L} \quad\left(1 x_{1}+4 x_{2} \geq 4\right)$
- Constraint: deliver at least $5 \boldsymbol{\mathcal { M }} \quad\left(2 x_{1}+2 x_{2} \geq 5\right)$
- Constraint: deliver at least $3 \boldsymbol{\mathcal { H }} \quad\left(2 x_{1}+1 x_{2} \geq 3\right)$

Modelling

- Introduce variables x_{1} and x_{2} : represent units of raw oil processed with procedure A) resp. B)
- Objective: minimize costs $\quad\left(3 x_{1}+5 x_{2}\right)$
- Constraint: positiveness $\quad\left(x_{1}, x_{2} \geq 0\right)$
- Constraint: deliver at least $4 \mathcal{L} \quad\left(1 x_{1}+4 x_{2} \geq 4\right)$
- Constraint: deliver at least $5 \boldsymbol{\mathcal { M }} \quad\left(2 x_{1}+2 x_{2} \geq 5\right)$
- Constraint: deliver at least $3 \boldsymbol{\mathcal { H }} \quad\left(2 x_{1}+1 x_{2} \geq 3\right)$

Modelling

- Introduce variables x_{1} and x_{2} : represent units of raw oil processed with procedure A) resp. B)
- Objective: minimize costs $\quad\left(3 x_{1}+5 x_{2}\right)$
- Constraint: positiveness $\quad\left(x_{1}, x_{2} \geq 0\right)$
- Constraint: deliver at least $4 \mathcal{L} \quad\left(1 x_{1}+4 x_{2} \geq 4\right)$
- Constraint: deliver at least $5 \boldsymbol{\mathcal { M }} \quad\left(2 x_{1}+2 x_{2} \geq 5\right)$
- Constraint: deliver at least $3 \boldsymbol{\mathcal { H }} \quad\left(2 x_{1}+1 x_{2} \geq 3\right)$

$$
\begin{array}{lll}
\min _{x} & 3 x_{1}+5 x_{2} & \\
\text { s.t. } & 1 x_{1}+4 x_{2} \geq 4 \\
& 2 x_{1}+2 x_{2} & \geq 5 \\
& 2 x_{1}+1 x_{2} & \geq 3 \\
& x_{1}, x_{2} & \geq 0
\end{array}
$$

What is a Linear Program?

Let for the rest of the talk $c, x \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}$. Here b, c and A are given, while x is what we are looking for.

What is a Linear Program?

Let for the rest of the talk $c, x \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}$. Here b, c and A are given, while x is what we are looking for. A Linear Program (LP) consists of a linear objective function $c^{T} x$ to be optimized and constraints the solution x has to fulfill.

$$
\begin{aligned}
& \min _{x} \quad c^{T} x=\sum_{i=0}^{n} c_{i} x_{i}=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n} \\
& \text { s.t. } a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \leq b_{1} \\
& a_{m_{1} 1} x_{1}+a_{m_{1} 2} x_{2}+\cdots+a_{m_{1} n} x_{n} \leq b_{m_{1}} \\
& a_{m_{2} 1} x_{1}+a_{m_{2} 2} x_{2}+\cdots+a_{m_{2} n} x_{n} \geq b_{m_{2}} \\
& a_{m_{3} 1} x_{1}+a_{m_{3} 2} x_{2}+\cdots+a_{m_{3} n} x_{n}=b_{m_{3}}
\end{aligned}
$$

Transformations

- Maximizing $f(x)$ is the same as minimizing $-f(x)$.

Transformations

- Maximizing $f(x)$ is the same as minimizing $-f(x)$.
- Multiply \geq inequalities with -1 to get \leq inequalities

Transformations

- Maximizing $f(x)$ is the same as minimizing $-f(x)$.
- Multiply \geq inequalities with -1 to get \leq inequalities
- An equality can be split up in two inequalities that both have to be fulfilled:

$$
a_{i}^{T} x=b_{i} \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
a_{i}^{T} x \geq b_{i} \\
a_{i}^{T} x \leq b_{i}
\end{array}\right\}
$$

Transformations

- Maximizing $f(x)$ is the same as minimizing $-f(x)$.
- Multiply \geq inequalities with -1 to get \leq inequalities
- An equality can be split up in two inequalities that both have to be fulfilled:

$$
a_{i}^{T} x=b_{i} \quad \Longleftrightarrow \quad\left\{\begin{array}{c}
a_{i}^{T} x \geq b_{i} \\
a_{i}^{T} x \leq b_{i}
\end{array}\right\}
$$

- Inequalities can be transformed to equalities by introducing additional (slack) variables:

$$
a_{i}^{T} x \leq b_{i} \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
a_{i}^{T} x+s_{i}=b_{i} \\
s_{i} \geq 0
\end{array}\right\}
$$

Standard form

- Can transform problem to a mathematically equivalent program. Advantage: easier to handle in theory.

Standard form

- Can transform problem to a mathematically equivalent program. Advantage: easier to handle in theory.
- In practice: exploit structure!

Standard form

- Can transform problem to a mathematically equivalent program. Advantage: easier to handle in theory.
- In practice: exploit structure!

Standard form

Geometric interpretation
$\begin{array}{ll}\min _{x} & c^{T} x \\ \text { s.t. } & A x \leq b\end{array}$

Oil example: different formulations

Geometric interpretation

$$
\begin{array}{ll}
\min _{x} & c^{T} x \\
\text { s.t. } & A x \leq b
\end{array}
$$

$$
A=\left(\begin{array}{cc}
-1 & -4 \\
-2 & -2 \\
-2 & -1 \\
-1 & 0 \\
0 & -1
\end{array}\right), b=\left[\begin{array}{c}
-4 \\
-5 \\
-3 \\
0 \\
0
\end{array}\right]
$$

$$
c=\left[\begin{array}{l}
3 \\
5
\end{array}\right], \quad x_{1}, x_{2} \text { free }
$$

Oil example: different formulations

Geometric interpretation

$$
\begin{array}{ll}
\min _{x} & c^{T} x \\
\text { s.t. } & A x \leq b
\end{array}
$$

$$
\begin{gathered}
A=\left(\begin{array}{cc}
-1 & -4 \\
-2 & -2 \\
-2 & -1 \\
-1 & 0 \\
0 & -1
\end{array}\right), b=\left[\begin{array}{c}
-4 \\
-5 \\
-3 \\
0 \\
0
\end{array}\right], \\
c=\left[\begin{array}{l}
3 \\
5
\end{array}\right], \quad x_{1}, x_{2} \text { free }
\end{gathered}
$$

Standard form
$\min _{x} c^{T} x$
s.t. $A x=b$
$x \geq 0$
$A=\left(\begin{array}{ccccc}1 & 4 & -1 & 0 & 0 \\ 2 & 2 & 0 & -1 & 0 \\ 2 & 1 & 0 & 0 & -1\end{array}\right), b=\left[\begin{array}{l}4 \\ 5 \\ 3\end{array}\right]$,

$$
c=\left[\begin{array}{l}
3 \\
5 \\
0 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right] \geq\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Oil example: Geometric view

- Two-dimensional plane, $x_{i} \geq 0$
- $\mathcal{L} \quad\left(1 x_{1}+4 x_{2} \geq 4\right)$
- \mathcal{H}
$\left(2 x_{1}+1 x_{2} \geq 3\right)$
- $\boldsymbol{\mathcal { M }} \quad\left(2 x_{1}+2 x_{2} \geq 5\right)$
- Objective function vector c
- "Push" level lines to obtain ptimal solution:

$$
x_{1}=2, x_{2}=\frac{1}{2}
$$

Oil example: Geometric view

- Two-dimensional plane, $x_{i} \geq 0$
- $\mathcal{L} \quad\left(1 x_{1}+4 x_{2} \geq 4\right)$
- H
$\left(2 x_{1}+1 x_{2} \geq 3\right)$
- $\boldsymbol{\mathcal { M }} \quad\left(2 x_{1}+2 x_{2} \geq 5\right)$
- Objective function vector c
- "Push" level lines to obtain ptimal solution:

$$
x_{1}=2, x_{2}=\frac{1}{2}
$$

Oil example: Geometric view

- Two-dimensional plane, $x_{i} \geq 0$
- $\mathcal{L} \quad\left(1 x_{1}+4 x_{2} \geq 4\right)$
- H
$\left(2 x_{1}+1 x_{2} \geq 3\right)$
- $\boldsymbol{\mathcal { M }} \quad\left(2 x_{1}+2 x_{2} \geq 5\right)$
- Objective function vector c
- "Push" level lines to obtain ptimal solution:

$$
x_{1}=2, x_{2}=\frac{1}{2}
$$

Oil example: Geometric view

- Two-dimensional plane, $x_{i} \geq 0$
- $\mathcal{L} \quad\left(1 x_{1}+4 x_{2} \geq 4\right)$
- H
$\left(2 x_{1}+1 x_{2} \geq 3\right)$
- $\boldsymbol{\mathcal { M }} \quad\left(2 x_{1}+2 x_{2} \geq 5\right)$
- Objective function vector c
- "Push" level lines to obtain ptimal solution:

$$
x_{1}=2, x_{2}=\frac{1}{2}
$$

Oil example: Geometric view

- Two-dimensional plane, $x_{i} \geq 0$
- $\mathcal{L} \quad\left(1 x_{1}+4 x_{2} \geq 4\right)$
- $\boldsymbol{H} \quad\left(2 x_{1}+1 x_{2} \geq 3\right)$
- $\boldsymbol{M} \quad\left(2 x_{1}+2 x_{2} \geq 5\right)$
- Objective function vector c
- "Push" level lines to obtain ptimal solution:
$x_{1}=2, x_{2}=\frac{1}{2}$

Oil example: Geometric view

- Two-dimensional plane, $x_{i} \geq 0$
- $\mathcal{L} \quad\left(1 x_{1}+4 x_{2} \geq 4\right)$
- $\mathcal{H} \quad\left(2 x_{1}+1 x_{2} \geq 3\right)$
- $\boldsymbol{\mathcal { M }} \quad\left(2 x_{1}+2 x_{2} \geq 5\right)$
- Objective function vector c
- "Push" level lines to obtain ptimal solution:
$x_{1}=2, x_{2}=\frac{1}{2}$

Geometric example in 3d

- Feasible region in three dimensions
- Hyperplanes orthogonal to vector c show solutions with the same objective value
- "Pushing" this hyperplane out of feasible region \Longrightarrow optimal solution
- Is this also true in higher dimensions?!?

Fundamental Theorem of Linear Programming

Theorem. Let $P=\left\{x \in \mathbb{R}^{n}: A x=b, x \geq 0\right\} \neq \emptyset$ be a polyhedron. Then either the objective function $c^{T} x$ has no minimum in P or at least one vertex will take the minimal objective value.

Summary

- Different formulations for LPs. Most important:

Summary

- Different formulations for LPs. Most important:

- Optimal solution (if existent) is always a vertex

Overview of talk

- Tutorial example, geometric interpretation, polyhedra
- Simplex algorithm
- Duality
- Other algorithms
- References, Software

Simplex algorithm - main idea

- Idea of the Simplex-Method: start from one vertex and jump to a neighbour with a better value until we reach the optimum

Simplex algorithm - main idea

- Idea of the Simplex-Method: start from one vertex and jump to a neighbour with a better value until we reach the optimum
- How can we "go" from one vertex to another? Just replace one index in "basis" B (set of non-zero variables)!

Simplex algorithm - main idea

- Idea of the Simplex-Method: start from one vertex and jump to a neighbour with a better value until we reach the optimum
- How can we "go" from one vertex to another? Just replace one index in "basis" B (set of non-zero variables)!
- Two things important: choose feasible points and improve objective value in each step

Simplex algorithm - main idea

- Idea of the Simplex-Method: start from one vertex and jump to a neighbour with a better value until we reach the optimum
- How can we "go" from one vertex to another? Just replace one index in "basis" B (set of non-zero variables)!
- Two things important: choose feasible points and improve objective value in each step

Overview of talk

- Tutorial example, geometric interpretation, polyhedra
- Simplex algorithm
- Duality
- Other algorithms
- References, Software

Duality

- Idea: get a lower bound on the minimum
- Let x be a feasible solution of the problem. Then in each row

$$
A_{i \cdot x}=b_{i}
$$

- Linear combination gives

$$
\sum_{i} y_{i} A_{i \cdot x}=\sum_{i} y_{i} b_{i}
$$

- Choose y so that new coefficients smaller

$$
c^{T} x \geq y^{\top} A x=y^{\top} b
$$

- Choose best bound from all possible ones

$$
\begin{array}{ll}
\max _{y} & b^{T} y \\
\text { s.t. } & A^{T} y \leq c
\end{array}
$$

Duality theorem (Gale, Kuhn, Tucker 1951)

Primal problem (PP)

> Dual problem (DP)

$$
\begin{array}{ll}
\min _{x} & c^{T} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

```
maxy }\mp@subsup{b}{}{T}
s.t. }\mp@subsup{A}{}{T}y\leq
```

Theorem. PP has a feasible, optimal solution x^{*} if and only if DP has a feasible, optimal solution y^{*}. Then $c^{T} x^{*}=b^{T} y^{*}$.

What to know about duality

- The dual of the dual is the primal program again
- Feasible solutions of PP and DP bound one another
- Applying the primal algorithm to DP is equivalent to so called "dual simplex algorithm".
- Dimensions of variables different: m and n
- Can solve the problem with "primal" or "dual" simplex, can have completly different behaviour (\# of iterations)

Overview of talk

- Tutorial example, geometric interpretation, polyhedra
- Simplex algorithm
- Duality
- Other algorithms
- References, Software

History of Linear Programming

- George Dantzig invented the simplex algorithm in 1947
- The simplex algorithm has theoretically an exponential (in the number of variables) runtime-behaviour - it is possible to construct examples where all vertices are visited (Klee and Minty)
- In 1979 Leonid Khachiyan proposed an extension to the nonlinear "Ellipsoid method" of Shor and Nemirovski - the first method with a polynomial runtime behaviour
- Method performs bad in practice, therefore it is not used any more, but important for theory and boosted Interior Point Methods

Interior Point algorithms

Karmarkar, 1984. Idea:

- Walk through the interior of the feasible domain
- Iterate on KKT-conditions with Newton method
- Gives a linear system in each step
- Interior Point, Primal and Dual Simplex each perform best on approximately one third of the problem instances

Overview of talk

- Tutorial example, geometric interpretation, polyhedra
- Simplex algorithm
- Duality
- Other algorithms
- References, Software

References

- Argonne NEOS Server: http://www.neos-guide.org
- Vasek Chvátal, "Linear Programming", Freeman and Company, New York (1983)
- M. Padberg, "Linear Optimization and Extensions", Springer (1999)
- S. Wright, "Primal-Dual Interior-Point Methods", SIAM (1997)
- R. Vanderbei, "Linear Programming: Foundations and Extensions", Operations Research and Management Science, Vol. 196, Springer (2010)

Software

- Some commercial codes:
- CPLEX (owned by IBM-ILOG)
- GUROBI (R. Bixby et al.)
- Noncommercial open source codes:
- SoPlex Konrad-Zuse-Zentrum Berlin.
- lp_solve by Michel Berkelaar. Can also solve mixed-integer problems.
- OOQP by Steve Wright. Interior Point solver for LP and QP

