Algorithmic differentiation

TEMPO Course on Numerical Optimal Control, 4-13 August 2014,
Freiburg im Breisgau, Germany

Joel Andersson

5 August 2014

° Calculating derivatives
e Algorithmic differentiation
© Jacobians and Hessians

@ software

© summary

[m] = =
Joel Andersson Algorithmic differentiation

Outline

@ Calculating derivatives

o & = E DA
Joel Andersson Algorithmic differentiation

Methods for calculating derivatives

o & = E DA
Joel Andersson Algorithmic differentiation

@ By hand

o & = E DA
Joel Andersson Algorithmic differentiation

Methods for calculating derivatives

Methods for calculating derivatives

@ By hand <+ Time consuming & error prone!

Joel Andersson Algorithmic differentiation 5 August 2014 4/20

Methods for calculating derivatives
@ By hand <+ Time consuming & error prone!

@ Symbolic differentiation

Joel Andersson Algorithmic differentiation 5 August 2014 4/20

Methods for calculating derivatives
@ By hand <+ Time consuming & error prone!
@ Symbolic differentiation

@ Finite difference approximation

Joel Andersson Algorithmic differentiation 5 August 2014 4/20

Methods for calculating derivatives
@ By hand <+ Time consuming & error prone!
@ Symbolic differentiation
@ Finite difference approximation

@ Complex step differentiation (“Imaginary trick”)

Joel Andersson Algorithmic differentiation 5 August 2014 4/20

Methods for calculating derivatives
@ By hand <+ Time consuming & error prone!
@ Symbolic differentiation
@ Finite difference approximation
@ Complex step differentiation (“Imaginary trick”)

@ Automatic differentiation (AD)

Joel Andersson Algorithmic differentiation 5 August 2014 4/20

Symbolic differentiation

We can obtain an expression of the derivatives we need with:
@ Mathematica
@ Maple
@ Symbolic Toolbox for MATLAB

SymPy

Joel Andersson Algorithmic differentiation 5 August 2014 5 /20

Symbolic differentiation

We can obtain an expression of the derivatives we need with:
@ Mathematica
@ Maple
@ Symbolic Toolbox for MATLAB
@ SymPy
o ...

Often this results in a very long code which is
expensive to evaluate.

Joel Andersson Algorithmic differentiation 5 August 2014 5/ 20

Finite differences

f
Consider a function f : R™ — R"™ with Jacobian J(x) = %
f X)—f
S5~ TEHERZ IR
Pros and cons:

o & E DA
Joel Andersson Algorithmic differentiation

Finite differences

f
Consider a function f : R™ — R"™ with Jacobian J(x) = %
f X)—f
S5~ TEHERZ IR
Pros and cons:

+ Really easy to implement

o & E DA
Joel Andersson Algorithmic differentiation

Finite differences

f
Consider a function f : R™ — R with Jacobian J(x) = %

f(x+ tx) —f(x)
t

J(x) X ~

Pros and cons:
+ Really easy to implement

+ Relatively fast

Joel Andersson Algorithmic differentiation

5 August 2014

6/ 20

Finite differences

f'
Consider a function f : R™ — R with Jacobian J(x) = %

f(x+ tx) —f(x)
t

J(x) X ~

Pros and cons:
+ Really easy to implement
+ Relatively fast

— Poor accuracy

Joel Andersson Algorithmic differentiation 5 August 2014 6 /20

Finite differences

f'
Consider a function f : R™ — R with Jacobian J(x) = %

f(x+ tx) —f(x)
t

J(x) X ~

Pros and cons:
+ Really easy to implement
+ Relatively fast
— Poor accuracy

» Small t = cancellation errors

Joel Andersson Algorithmic differentiation 5 August 2014 6 /20

Finite differences

f'
Consider a function f : R™ — R with Jacobian J(x) = %

f(x+ tx) —f(x)
t

J(x) X ~

Pros and cons:
+ Really easy to implement
+ Relatively fast
— Poor accuracy

» Small t = cancellation errors
» Large t = approximation errors

Joel Andersson Algorithmic differentiation 5 August 2014 6 /20

Finite differences

f
Consider a function f : R™ — R™ with Jacobian J(x) = %

f(x+ tx) —f(x)
t

J(x) X ~

Pros and cons:
+ Really easy to implement
+ Relatively fast
— Poor accuracy

» Small t = cancellation errors
» Large t = approximation errors
» Rule of thumb: t ~ /¢, where € is f accuracy, typically ~ 10716

Joel Andersson Algorithmic differentiation 5 August 2014 6 /20

Finite differences

f
Consider a function f : R™ — R with Jacobian J(x) = %

f(x+ tx) —f(x)
t

J(x) X ~

Pros and cons:
+ Really easy to implement
+ Relatively fast
— Poor accuracy

» Small t = cancellation errors
» Large t = approximation errors
» Rule of thumb: t ~ /¢, where € is f accuracy, typically ~ 10716

— No efficient way to calculate T J(x)

Joel Andersson Algorithmic differentiation 5 August 2014 6 /20

Complex step differentiation (“Imaginary trick”)

Finite differences with imaginary perturbation:

J(X))A(zm<f(x+it)“<) — f(x)

)

o & E DA
Joel Andersson Algorithmic differentiation

Complex step differentiation (“Imaginary trick”)
Finite differences with imaginary perturbation:

F(x+itR) — f(x)> _ A(f(x+itx)
it t

J(x))?zf)‘i<

Pros and cons:

Joel Andersson Algorithmic differentiation 5 August 2014 7 /20

Complex step differentiation (“Imaginary trick”)
Finite differences with imaginary perturbation:

F(x+itR) — f(x)> _ A(f(x+itx)
it t

J(x))?%%<

Pros and cons:

+ Really easy to implement in MATLAB, Python

Joel Andersson Algorithmic differentiation 5 August 2014 7 /20

Complex step differentiation (“Imaginary trick”)
Finite differences with imaginary perturbation:

F(x+itR) — f(x)> _ A(f(x+itx)
it t

J(x))?zf)%<

Pros and cons:
+ Really easy to implement in MATLAB, Python
+ Relatively fast

Joel Andersson Algorithmic differentiation 5 August 2014 7 /20

Complex step differentiation (“Imaginary trick”)

Finite differences with imaginary perturbation:

F(x+itR) — f(x)> _ A(f(x+itx)

it t

J(x))?zf)‘{(

Pros and cons:
+ Really easy to implement in MATLAB, Python
+ Relatively fast

+ Good accuracy (no cancellation errors = t small)

Joel Andersson Algorithmic differentiation 5 August 2014 7 /20

Complex step differentiation (“Imaginary trick”)

Finite differences with imaginary perturbation:

f(x+itX)— f(x)> _ _J(f(x—i— itXx))

it t

J(x))?zf)‘{(

Pros and cons:
+ Really easy to implement in MATLAB, Python
+ Relatively fast
+ Good accuracy (no cancellation errors = t small)

— Error prone, e.g. X7y

Joel Andersson Algorithmic differentiation 5 August 2014 7 /20

Complex step differentiation (“Imaginary trick”)

Finite differences with imaginary perturbation:

f(x+itX)— f(x)> _ _J(f(x—i— itXx))

it t

J(x))?zf)‘{(

Pros and cons:
+ Really easy to implement in MATLAB, Python
+ Relatively fast
+ Good accuracy (no cancellation errors = t small)
— Error prone, e.g. X7y

— Restricted

Joel Andersson Algorithmic differentiation 5 August 2014 7 /20

Complex step differentiation (“Imaginary trick”)

Finite differences with imaginary perturbation:

it

J(x))?zi)%<

f(x+itX)— f(x)> _ _J(f(x—i— itXx))

Pros and cons:

+
+
+

Joel Andersson Algorithmic differentiation

Really easy to implement in MATLAB, Python
Relatively fast

Good accuracy (no cancellation errors = t small)
Error prone, e.g. x7y

Restricted

No efficient way to calculate T J(x)

7/20

Outline

e Algorithmic differentiation

o & = E DA
Joel Andersson Algorithmic differentiation

Decomposable function: y = F(x)

o & = E DA
Joel Andersson Algorithmic differentiation

Decomposable function: y = F(x)

@ F:R™ — R" sufficiently smooth

o & = E DA
Joel Andersson Algorithmic differentiation

Decomposable function: y = F(x)
@ F:R™ — R" sufficiently smooth

@ Decompose into “atomic operations” which we know how to differentiate:
Zp < X
for k=1,...,K do
z + fk ({zi}iez,)
end for
Y < Zk
return y

Joel Andersson Algorithmic differentiation 5 August 2014 9 /20

Decomposable function: y = F(x)

@ F:R™ — R" sufficiently smooth

@ Decompose into “atomic operations” which we know how to differentiate:

Zp < X

for k=1,...,K do
zi + fi {zi}iez.)

end for

Yy < Zk

return y

Such a decomposition is always
available if F written as a computer
program/!

Joel Andersson Algorithmic differentiation 5 August 2014

9/20

Decomposable function: y = F(x)

@ F:R™ — R" sufficiently smooth

@ Decompose into “atomic operations” which we know how to differentiate:

Zp < X

for k=1,...,K do
zi + fi {zi}iez.)

end for

Yy < Zk

return y

Such a decomposition is always
available if F written as a computer
program/!

Example

y = sin(v/x)

Zp < X

zZ] = \/Z_o
Zy =SInZg
Yy
return y

Joel Andersson Algorithmic differentiation 5 August 2014

9/20

o & = E DA
Joel Andersson Algorithmic differentiation

@ Decomposition can be with simple scalar operations . ..

o & = E DA
Joel Andersson Algorithmic differentiation

» x4y, x*y, sin(x), x¥

o & = E DA
Joel Andersson Algorithmic differentiation

@ Decomposition can be with simple scalar operations . ..

» x4y, x*y, sin(x), x¥
» Usual case in software

o & = E DA
Joel Andersson Algorithmic differentiation

@ Decomposition can be with simple scalar operations . ..

@ Decomposition can be with simple scalar operations . ..

» x4y, x*y, sin(x), x¥
» Usual case in software

@ ...or with more general operations

Joel Andersson Algorithmic differentiation 5 August 2014 10 / 20

@ Decomposition can be with simple scalar operations . ..

» x4y, x*y, sin(x), x¥
» Usual case in software

@ ...or with more general operations

> xT, x[i] =y, XY, eX

Joel Andersson Algorithmic differentiation 5 August 2014 10 / 20

@ Decomposition can be with simple scalar operations . ..

» x4y, x*y, sin(x), x¥
» Usual case in software

@ ...or with more general operations

> xT, x[i] =y, XY, eX
» E.g. gradient of det(X):

Joel Andersson Algorithmic differentiation 5 August 2014 10 / 20

@ Decomposition can be with simple scalar operations . ..

» x4y, x*y, sin(x), x¥
» Usual case in software

@ ...or with more general operations

> xT, x[i] =y, XY, eX
» E.g. gradient of det(X): det(X) X~ T

Joel Andersson Algorithmic differentiation 5 August 2014 10 / 20

@ Decomposition can be with simple scalar operations . ..
» x4y, x*y, sin(x), x¥
» Usual case in software

@ ...or with more general operations

> xT, x[i] =y, XY, eX
» E.g. gradient of det(X): det(X) X~ T
» In e.g. CasADi

Joel Andersson Algorithmic differentiation 5 August 2014 10 / 20

@ Decomposition can be with simple scalar operations . ..

» x4y, x*y, sin(x), x¥
» Usual case in software

@ ...or with more general operations

> xT, x[i] =y, XY, eX
» E.g. gradient of det(X): det(X) X~ T
» In e.g. CasADi

@ Derivative propagation rules exist for

Joel Andersson Algorithmic differentiation 5 August 2014 10 / 20

@ Decomposition can be with simple scalar operations . ..

» x4y, x*y, sin(x), x¥
» Usual case in software

@ ...or with more general operations

> xT, x[i] =y, XY, eX
» E.g. gradient of det(X): det(X) X~ T
» In e.g. CasADi

@ Derivative propagation rules exist for

» ODE/DAE integrators, “sensitivity analysis”

Joel Andersson Algorithmic differentiation 5 August 2014 10 / 20

@ Decomposition can be with simple scalar operations . ..

» x4y, x*y, sin(x), x¥
» Usual case in software

@ ...or with more general operations

> xT, x[i] =y, XY, eX
» E.g. gradient of det(X): det(X) X~ T
» In e.g. CasADi

@ Derivative propagation rules exist for

» ODE/DAE integrators, “sensitivity analysis”
> Linear and nonlinear systems of equations

Joel Andersson Algorithmic differentiation 5 August 2014 10 / 20

Differentiate the algorithm!

o & = E DA
Joel Andersson Algorithmic differentiation

Differentiate the algorithm!

Zp < X
dZ()
—
dx <
Z0 & X fork=1,...,K do
for k=1,...,K do z + i ({zi}iez,)
z + i ({zitiez,) — dzi O o v\ %2
end for dx A o 0z, ({zi}iezn,) dx
i€Ty
Y Zk end for
return y y 7k
dZK
J o =K
- dx
return y, J

Joel Andersson Algorithmic differentiation 5 August 2014 11 /20

Differentiate the algorithm!

Zp < X
dZ()
— <«
dx <
Z0 & x for k=1,...,K do
fork=1,...,K do z < i ({zi}iez,)
7 < fic({zi}iez,) — dz Ok az
end for dx — 0z ({z}ien,) dx
i€Ty
Y &2k end for
return y vz
dZK
J o =K
< dx
return y, J
Write as a system of linear equations:
dz dz dz
=B+ L— J=AT =
dx + dx’ dx’

Joel Andersson Algorithmic differentiation 5 August 2014 11 /20

Write as a system of linear equations:

dz dz dz
— =B+ — = AT =
dx + dx’ J dx’

o & = E DA
Joel Andersson Algorithmic differentiation

Write as a system of linear equations:

dz dz dz

— =B+ L— =AT —

dx + dx’ J dx’

with
P4 0 /
Z]_ : 0
z= . , A= : and B = . ,

: 0 :
ZK / 0

with / and 0 of appropriate dimensions, as well as the extended Jacobian,

o O
on
L — 820
’
ofc ofi
Ozg e OzKk_1

Joel Andersson Algorithmic differentiation 5 August 2014 12 /20

Write as a system of linear equations:

dz dz dz

— =B+ L— =AT —

dx + dx’ J dx’

with
P4 0 /
Z]_ : 0
z= . , A= : and B = . ,

: 0 :
ZK / 0

with / and 0 of appropriate dimensions, as well as the extended Jacobian,

0o 0
of
0z
L=| = ,
ofic Ofi
Ozg OzKk_1

Since | — L is invertible, we can solve for J:

J=AT(-L)'B

Joel Andersson Algorithmic differentiation 5 August 2014 12 /20

o & = E DA
Joel Andersson Algorithmic differentiation

@ Have J=AT(I - L)"'B

o & = E DA
Joel Andersson Algorithmic differentiation

@ Have J=AT(I - L)"'B
@ Multiply J from the right:

o & = E DA
Joel Andersson Algorithmic differentiation

@ Have J=AT(I - L)"'B

@ Multiply J from the right:

> §i=Jx=AT(I-L)"'Bx

o & = E DA
Joel Andersson Algorithmic differentiation

@ Have J=AT(I - L)"'B
@ Multiply J from the right:

» p=J8=AT(I-L)'B%
» Cheap with forward substitution of lower triangular (/ — L)

Joel Andersson Algorithmic differentiation 5 August 2014 13 /20

@ Have J=AT(I - L)"'B
@ Multiply J from the right:

» p=J8=AT(I-L)'B%
» Cheap with forward substitution of lower triangular (/ — L)
> No storage of L needed

Joel Andersson Algorithmic differentiation 5 August 2014 13 /20

@ Have J=AT(I - L)"'B

@ Multiply J from the right:

g =J8=AT(I-L)"'Bx

Cheap with forward substitution of lower triangular (/ — L)

No storage of L needed
Forward mode of AD

v vy VvYyy

Joel Andersson Algorithmic differentiation 5 August 2014 13 /20

@ Have J=AT(I - L)"'B

@ Multiply J from the right:

g =J8=AT(I-L)"'Bx

Cheap with forward substitution of lower triangular (/ — L)

No storage of L needed
Forward mode of AD

v vy VvYyy

@ Multiply J from the left:

Joel Andersson Algorithmic differentiation 5 August 2014 13 /20

@ Have J=AT(I - L)"'B

@ Multiply J from the right:

g =J8=AT(I-L)"'Bx

Cheap with forward substitution of lower triangular (/ — L)

No storage of L needed
Forward mode of AD

v vy VvYyy

@ Multiply J from the left:
» x:=JTy=BT(I-L)"TAy

Joel Andersson Algorithmic differentiation 5 August 2014 13 /20

@ Have J=AT(I - L)"'B

@ Multiply J from the right:

g =J8=AT(I-L)"'Bx

Cheap with forward substitution of lower triangular (/ — L)

No storage of L needed
Forward mode of AD

v vy VvYyy

@ Multiply J from the left:

» x:=JTy=BT(I-L)"TAy
» Cheap with backward substitution of upper triangular (/ — L)T

Joel Andersson Algorithmic differentiation 5 August 2014 13 /20

@ Have J=AT(I - L)"'B

@ Multiply J from the right:

g =J8=AT(I-L)"'Bx

Cheap with forward substitution of lower triangular (/ — L)

No storage of L needed
Forward mode of AD

v vy VvYyy

@ Multiply J from the left:

» x:=JTy=BT(I-L)"TAy
» Cheap with backward substitution of upper triangular (/ — L)T
» Storage of L needed

Joel Andersson Algorithmic differentiation 5 August 2014 13 /20

@ Have J=AT(I - L)"'B

@ Multiply J from the right:

g =J8=AT(I-L)"'Bx

Cheap with forward substitution of lower triangular (/ — L)

No storage of L needed
Forward mode of AD

v vy VvYyy

@ Multiply J from the left:

x:=JTy=BT(I-L)"TAy

Cheap with backward substitution of upper triangular (/ — L)T
Storage of L needed

Reverse mode of AD

vy v vy

Joel Andersson Algorithmic differentiation 5 August 2014 13 /20

Forward mode of AD

o & = E DA
Joel Andersson Algorithmic differentiation

Forward mode of AD

@ Calculate Jacobian-times-vector product cheaply

o & = E DA
Joel Andersson Algorithmic differentiation

Forward mode of AD

@ Calculate Jacobian-times-vector product cheaply
@ Computational cost: ~ cost of evaluating F

=] = = =] DA C
Joel Andersson Algorithmic differentiation

Forward mode of AD
@ Calculate Jacobian-times-vector product cheaply
@ Computational cost: ~ cost of evaluating F

@ Small memory requirements

Joel Andersson Algorithmic differentiation 5 August 2014 14 /20

Forward mode of AD
@ Calculate Jacobian-times-vector product cheaply
@ Computational cost: ~ cost of evaluating F

@ Small memory requirements

Reverse mode of AD

Joel Andersson Algorithmic differentiation 5 August 2014 14 /20

Forward mode of AD
@ Calculate Jacobian-times-vector product cheaply
@ Computational cost: ~ cost of evaluating F

@ Small memory requirements

Reverse mode of AD

@ Calculate vector-times-Jacobian product cheaply

Joel Andersson Algorithmic differentiation 5 August 2014 14 /20

Forward mode of AD
@ Calculate Jacobian-times-vector product cheaply
@ Computational cost: & cost of evaluating F

@ Small memory requirements

Reverse mode of AD
@ Calculate vector-times-Jacobian product cheaply

@ In particular: Gradient of scalar-valued f cheap!

Joel Andersson Algorithmic differentiation 5 August 2014 14 /20

Forward mode of AD
@ Calculate Jacobian-times-vector product cheaply
@ Computational cost: & cost of evaluating F

@ Small memory requirements

Reverse mode of AD
@ Calculate vector-times-Jacobian product cheaply
@ In particular: Gradient of scalar-valued f cheap!

@ Computational cost: ~ cost of evaluating F

Joel Andersson Algorithmic differentiation 5 August 2014 14 /20

Forward mode of AD
@ Calculate Jacobian-times-vector product cheaply
@ Computational cost: & cost of evaluating F

@ Small memory requirements

Reverse mode of AD
@ Calculate vector-times-Jacobian product cheaply
@ In particular: Gradient of scalar-valued f cheap!
@ Computational cost: ~ cost of evaluating F

@ Intermediate operations (or their linearization) must be stored

Joel Andersson Algorithmic differentiation 5 August 2014 14 /20

Forward mode of AD
@ Calculate Jacobian-times-vector product cheaply
@ Computational cost: & cost of evaluating F

@ Small memory requirements

Reverse mode of AD
@ Calculate vector-times-Jacobian product cheaply
@ In particular: Gradient of scalar-valued f cheap!

@ Computational cost: ~ cost of evaluating F

Intermediate operations (or their linearization) must be stored

Can trade storage for extra computation (“checkpointing”)

Joel Andersson Algorithmic differentiation 5 August 2014 14 /20

Outline

e Jacobians and Hessians

o & = E DA
Joel Andersson Algorithmic differentiation

Calculating complete Jacobians and Hessians

o & = E DA
Joel Andersson Algorithmic differentiation

Calculating complete Jacobians and Hessians

@ Jacobians can be calculated by multiplying with ne, vectors from the right
or Nyow Vectors from the left

Joel Andersson Algorithmic differentiation 5 August 2014 16 / 20

Calculating complete Jacobians and Hessians

@ Jacobians can be calculated by multiplying with ne, vectors from the right
or Nyow Vectors from the left

@ Worst-case: =~ min(nyow, Ncol) times cost of evaluating F

Joel Andersson Algorithmic differentiation 5 August 2014 16 / 20

Calculating complete Jacobians and Hessians

@ Jacobians can be calculated by multiplying with ne, vectors from the right
or Nyow Vectors from the left

@ Worst-case: =~ min(nyow, Ncol) times cost of evaluating F

@ Much cheaper if J is sparse, e.g. banded

Joel Andersson Algorithmic differentiation 5 August 2014 16 / 20

Calculating complete Jacobians and Hessians

@ Jacobians can be calculated by multiplying with ne, vectors from the right
or Nyow Vectors from the left

@ Worst-case: =~ min(nyow, Ncol) times cost of evaluating F
@ Much cheaper if J is sparse, e.g. banded

@ Requires prior knowledge of sparsity pattern (automation possible)

Joel Andersson Algorithmic differentiation 5 August 2014 16 / 20

Calculating complete Jacobians and Hessians

@ Jacobians can be calculated by multiplying with ne, vectors from the right
or Nyow Vectors from the left

@ Worst-case: =~ min(nyow, Ncol) times cost of evaluating F
@ Much cheaper if J is sparse, e.g. banded
@ Requires prior knowledge of sparsity pattern (automation possible)

@ Hessians can be calculated as Jacobian-of-gradient

Joel Andersson Algorithmic differentiation 5 August 2014 16 / 20

Calculating complete Jacobians and Hessians

@ Jacobians can be calculated by multiplying with ne, vectors from the right
or Nyow Vectors from the left

@ Worst-case: =~ min(nyow, Ncol) times cost of evaluating F

@ Much cheaper if J is sparse, e.g. banded

@ Requires prior knowledge of sparsity pattern (automation possible)
@ Hessians can be calculated as Jacobian-of-gradient

@ Symmetry can be exploited

Joel Andersson Algorithmic differentiation 5 August 2014 16 / 20

Calculating complete Jacobians and Hessians

@ Jacobians can be calculated by multiplying with ne, vectors from the right
or Nyow Vectors from the left

@ Worst-case: =~ min(nyow, Ncol) times cost of evaluating F

@ Much cheaper if J is sparse, e.g. banded

@ Requires prior knowledge of sparsity pattern (automation possible)
@ Hessians can be calculated as Jacobian-of-gradient

@ Symmetry can be exploited

@ Much cheaper if H is sparse

Joel Andersson Algorithmic differentiation 5 August 2014 16 / 20

Outline

@ Ssoftware

o & = E DA
Joel Andersson Algorithmic differentiation

Generic tools to differentiate “black-box” code

o & = E DA
Joel Andersson Algorithmic differentiation

www.autodiff.org

Generic tools to differentiate “black-box” code
@ Language-specific: www.autodiff.org

o & = E DA
Joel Andersson Algorithmic differentiation

www.autodiff.org

Generic tools to differentiate “black-box” code

@ Language-specific: www.autodiff.org

e ADOL-C, ADIC, CppAD for C/C++

o & E DA
Joel Andersson Algorithmic differentiation

www.autodiff.org

Generic tools to differentiate “black-box” code
@ Language-specific: www.autodiff.org
e ADOL-C, ADIC, CppAD for C/C++
@ ADIFOR, TAPENADE for FORTRAN

Joel Andersson Algorithmic differentiation 5 August 2014 18 / 20

www.autodiff.org

Generic tools to differentiate “black-box” code
@ Language-specific: www.autodiff.org
e ADOL-C, ADIC, CppAD for C/C++
@ ADIFOR, TAPENADE for FORTRAN)

AD implemented inside other tools

Joel Andersson Algorithmic differentiation 5 August 2014 18 / 20

www.autodiff.org

Generic tools to differentiate “black-box” code
@ Language-specific: www.autodiff.org
e ADOL-C, ADIC, CppAD for C/C++
@ ADIFOR, TAPENADE for FORTRAN)

AD implemented inside other tools

@ CasADi

Joel Andersson Algorithmic differentiation 5 August 2014 18 / 20

www.autodiff.org

Generic tools to differentiate “black-box” code
@ Language-specific: www.autodiff.org
e ADOL-C, ADIC, CppAD for C/C++
@ ADIFOR, TAPENADE for FORTRAN

AD implemented inside other tools
@ CasADi
@ AMPL, GAMS: Algebraic modelling languages

Joel Andersson Algorithmic differentiation 5 August 2014 18 / 20

www.autodiff.org

Outline

© summary

o & = E DA
Joel Andersson Algorithmic differentiation

Key points

o & = E DA
Joel Andersson Algorithmic differentiation

Key points

@ Jacobian-times-vector products can be calculated cheaply

o & = E DA
Joel Andersson Algorithmic differentiation

Key points
@ Jacobian-times-vector products can be calculated cheaply

Important special case: gradient of a scalar-valued function

Joel Andersson Algorithmic differentiation 5 August 2014 20 / 20

Key points
@ Jacobian-times-vector products can be calculated cheaply
Important special case: gradient of a scalar-valued function

@ Complete Jacobians and Hessians: depends on sparsity pattern.

Joel Andersson Algorithmic differentiation 5 August 2014 20 / 20

Key points
@ Jacobian-times-vector products can be calculated cheaply
Important special case: gradient of a scalar-valued function
@ Complete Jacobians and Hessians: depends on sparsity pattern.

Worse case: &~ min(fyow, Ncol) times cost of evaluating F

Joel Andersson Algorithmic differentiation 5 August 2014 20 / 20

Key points
@ Jacobian-times-vector products can be calculated cheaply
Important special case: gradient of a scalar-valued function
@ Complete Jacobians and Hessians: depends on sparsity pattern.

Worse case: &~ min(fyow, Ncol) times cost of evaluating F

@ Good software exists

Joel Andersson Algorithmic differentiation 5 August 2014 20 / 20

Key points
@ Jacobian-times-vector products can be calculated cheaply
Important special case: gradient of a scalar-valued function
@ Complete Jacobians and Hessians: depends on sparsity pattern.
Worse case: &~ min(fyow, Ncol) times cost of evaluating F

@ Good software exists

Literature
Griewank & Walther, Evaluating Derivatives (2008)

Joel Andersson Algorithmic differentiation 5 August 2014 20 / 20

	Calculating derivatives
	Algorithmic differentiation
	Jacobians and Hessians
	Software
	Summary

