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Methods for calculating derivatives
@ By hand <+ Time consuming & error prone!
@ Symbolic differentiation
@ Finite difference approximation
@ Complex step differentiation (“Imaginary trick”)

@ Automatic differentiation (AD)
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Symbolic differentiation

We can obtain an expression of the derivatives we need with:
@ Mathematica
@ Maple
@ Symbolic Toolbox for MATLAB

SymPy
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Symbolic differentiation

We can obtain an expression of the derivatives we need with:
@ Mathematica
@ Maple
@ Symbolic Toolbox for MATLAB
@ SymPy
o ...

Often this results in a very long code which is
expensive to evaluate.
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Finite differences

f
Consider a function f : R™ — R with Jacobian J(x) = %

f(x+ tx) —f(x)
t

J(x) X ~

Pros and cons:
+ Really easy to implement
+ Relatively fast
— Poor accuracy

» Small t = cancellation errors
» Large t = approximation errors
» Rule of thumb: t ~ /¢, where € is f accuracy, typically ~ 10716

— No efficient way to calculate T J(x)
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Complex step differentiation (“Imaginary trick”)

Finite differences with imaginary perturbation:
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Complex step differentiation (“Imaginary trick”)

Finite differences with imaginary perturbation:

it

J(x))?zi)%<

f(x+itX)— f(x)> _ _J(f(x—i— itXx))

Pros and cons:

+
+
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Decomposable function: y = F(x)
@ F:R™ — R" sufficiently smooth

@ Decompose into “atomic operations” which we know how to differentiate:
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for k=1,...,K do
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end for
Y < Zk
return y
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Decomposable function: y = F(x)

@ F:R™ — R" sufficiently smooth

@ Decompose into “atomic operations” which we know how to differentiate:

Zp < X

for k=1,...,K do
zi + fi {zi}iez.)

end for

Yy < Zk

return y

Such a decomposition is always
available if F written as a computer
program/!

Example

y = sin(v/x)

Zp < X

zZ] = \/Z_o
Zy =SInZg
Yy
return y
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@ Decomposition can be with simple scalar operations . ..

» x4y, x*y, sin(x), x¥
» Usual case in software

@ ...or with more general operations

> xT, x[i] =y, XY, eX
» E.g. gradient of det(X): det(X) X~ T
» In e.g. CasADi

@ Derivative propagation rules exist for

» ODE/DAE integrators, “sensitivity analysis”
> Linear and nonlinear systems of equations
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Differentiate the algorithm!

Zp < X
dZ()
—
dx <
Z0 & X fork=1,...,K do
for k=1,...,K do z + i ({zi}iez,)
z + i ({zitiez,) — dzi O o v\ %2
end for dx A o 0z, ({zi}iezn,) dx
i€Ty
Y Zk end for
return y y 7k
dZK
J o =K
- dx
return y, J
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Differentiate the algorithm!

Zp < X
dZ()
— <«
dx <
Z0 & x for k=1,...,K do
fork=1,...,K do z < i ({zi}iez,)
7 < fic({zi}iez,) — dz Ok az
end for dx — 0z ({z}ien,) dx
i€Ty
Y &2k end for
return y vz
dZK
J o =K
< dx
return y, J
Write as a system of linear equations:
dz dz dz
=B+ L— J=AT =
dx + dx’ dx’
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Write as a system of linear equations:

dz dz dz

— =B+ L— =AT —

dx + dx’ J dx’

with
P4 0 /
Z]_ : 0
z= . , A= : and B = . ,

: 0 :
ZK / 0

with / and 0 of appropriate dimensions, as well as the extended Jacobian,

o ... ... O
on
L — 820
’
ofc ofi
Ozg e OzKk_1
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Write as a system of linear equations:

dz dz dz

— =B+ L— =AT —

dx + dx’ J dx’

with
P4 0 /
Z]_ : 0
z= . , A= : and B = . ,

: 0 :
ZK / 0

with / and 0 of appropriate dimensions, as well as the extended Jacobian,

0o ... ... 0
of
0z
L=| = ,
ofic Ofi
Ozg OzKk_1

Since | — L is invertible, we can solve for J:

J=AT(-L)'B
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@ Have J=AT(I - L)"'B
@ Multiply J from the right:

» p=J8=AT(I-L)'B%
» Cheap with forward substitution of lower triangular (/ — L)
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@ Have J=AT(I - L)"'B

@ Multiply J from the right:

g =J8=AT(I-L)"'Bx

Cheap with forward substitution of lower triangular (/ — L)

No storage of L needed
Forward mode of AD

v vy VvYyy
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@ Have J=AT(I - L)"'B

@ Multiply J from the right:

g =J8=AT(I-L)"'Bx

Cheap with forward substitution of lower triangular (/ — L)

No storage of L needed
Forward mode of AD

v vy VvYyy

@ Multiply J from the left:

x:=JTy=BT(I-L)"TAy

Cheap with backward substitution of upper triangular (/ — L)T
Storage of L needed

Reverse mode of AD

vy v vy
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Forward mode of AD
@ Calculate Jacobian-times-vector product cheaply
@ Computational cost: & cost of evaluating F

@ Small memory requirements

Reverse mode of AD
@ Calculate vector-times-Jacobian product cheaply
@ In particular: Gradient of scalar-valued f cheap!

@ Computational cost: ~ cost of evaluating F

Intermediate operations (or their linearization) must be stored

Can trade storage for extra computation ( “checkpointing”)
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Calculating complete Jacobians and Hessians

@ Jacobians can be calculated by multiplying with ne, vectors from the right
or Nyow Vectors from the left
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Calculating complete Jacobians and Hessians

@ Jacobians can be calculated by multiplying with ne, vectors from the right
or Nyow Vectors from the left

@ Worst-case: =~ min(nyow, Ncol) times cost of evaluating F

@ Much cheaper if J is sparse, e.g. banded

@ Requires prior knowledge of sparsity pattern (automation possible)
@ Hessians can be calculated as Jacobian-of-gradient

@ Symmetry can be exploited

@ Much cheaper if H is sparse
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www.autodiff.org

Generic tools to differentiate “black-box” code
@ Language-specific: www.autodiff.org
e ADOL-C, ADIC, CppAD for C/C++
@ ADIFOR, TAPENADE for FORTRAN

AD implemented inside other tools
@ CasADi
@ AMPL, GAMS: Algebraic modelling languages
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Key points
@ Jacobian-times-vector products can be calculated cheaply
Important special case: gradient of a scalar-valued function
@ Complete Jacobians and Hessians: depends on sparsity pattern.
Worse case: &~ min(fyow, Ncol) times cost of evaluating F

@ Good software exists

Literature
Griewank & Walther, Evaluating Derivatives (2008)
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