Algorithmic differentiation

TEMPO Course on Numerical Optimal Control, 4-13 August 2014, Freiburg im Breisgau, Germany

Joel Andersson

5 August 2014
(1) Calculating derivatives
(2) Algorithmic differentiation
(3) Jacobians and Hessians
4) Software
(5) Summary

Outline

(1) Calculating derivatives
(2) Algorithmic differentiation
(3) Jacobians and Hessians

4 Software
(5) Summary

Methods for calculating derivatives

Methods for calculating derivatives

- By hand

Methods for calculating derivatives

- By hand \leftarrow Time consuming \& error prone!

Methods for calculating derivatives

- By hand \leftarrow Time consuming \& error prone!
- Symbolic differentiation

Methods for calculating derivatives

- By hand \leftarrow Time consuming \& error prone!
- Symbolic differentiation
- Finite difference approximation

Methods for calculating derivatives

- By hand \leftarrow Time consuming \& error prone!
- Symbolic differentiation
- Finite difference approximation
- Complex step differentiation ("Imaginary trick")

Methods for calculating derivatives

- By hand \leftarrow Time consuming \& error prone!
- Symbolic differentiation
- Finite difference approximation
- Complex step differentiation ("Imaginary trick")
- Automatic differentiation (AD)

Symbolic differentiation

We can obtain an expression of the derivatives we need with:

- Mathematica
- Maple
- Symbolic Toolbox for MATLAB
- SymPy

Symbolic differentiation
We can obtain an expression of the derivatives we need with:

- Mathematica
- Maple
- Symbolic Toolbox for MATLAB
- SymPy
- ...

Often this results in a very long code which is expensive to evaluate.

Finite differences

Consider a function $f: \mathbb{R}^{n_{x}} \rightarrow \mathbb{R}^{n_{y}}$ with Jacobian $J(x)=\frac{\partial f}{\partial x}$

$$
J(x) \hat{x} \approx \frac{f(x+t \hat{x})-f(x)}{t}
$$

Pros and cons:

Finite differences

Consider a function $f: \mathbb{R}^{n_{x}} \rightarrow \mathbb{R}^{n_{y}}$ with Jacobian $J(x)=\frac{\partial f}{\partial x}$

$$
J(x) \hat{x} \approx \frac{f(x+t \hat{x})-f(x)}{t}
$$

Pros and cons:

+ Really easy to implement

Finite differences

Consider a function $f: \mathbb{R}^{n_{x}} \rightarrow \mathbb{R}^{n_{y}}$ with Jacobian $J(x)=\frac{\partial f}{\partial x}$

$$
J(x) \hat{x} \approx \frac{f(x+t \hat{x})-f(x)}{t}
$$

Pros and cons:

+ Really easy to implement
+ Relatively fast

Finite differences

Consider a function $f: \mathbb{R}^{n_{x}} \rightarrow \mathbb{R}^{n_{y}}$ with Jacobian $J(x)=\frac{\partial f}{\partial x}$

$$
J(x) \hat{x} \approx \frac{f(x+t \hat{x})-f(x)}{t}
$$

Pros and cons:

+ Really easy to implement
+ Relatively fast
- Poor accuracy

Finite differences

Consider a function $f: \mathbb{R}^{n_{x}} \rightarrow \mathbb{R}^{n_{y}}$ with Jacobian $J(x)=\frac{\partial f}{\partial x}$

$$
J(x) \hat{x} \approx \frac{f(x+t \hat{x})-f(x)}{t}
$$

Pros and cons:

+ Really easy to implement
+ Relatively fast
- Poor accuracy
- Small $t \Rightarrow$ cancellation errors

Finite differences

Consider a function $f: \mathbb{R}^{n_{x}} \rightarrow \mathbb{R}^{n_{y}}$ with Jacobian $J(x)=\frac{\partial f}{\partial x}$

$$
J(x) \hat{x} \approx \frac{f(x+t \hat{x})-f(x)}{t}
$$

Pros and cons:

+ Really easy to implement
+ Relatively fast
- Poor accuracy
- Small $t \Rightarrow$ cancellation errors
- Large $t \Rightarrow$ approximation errors

Finite differences

Consider a function $f: \mathbb{R}^{n_{x}} \rightarrow \mathbb{R}^{n_{y}}$ with Jacobian $J(x)=\frac{\partial f}{\partial x}$

$$
J(x) \hat{x} \approx \frac{f(x+t \hat{x})-f(x)}{t}
$$

Pros and cons:

+ Really easy to implement
+ Relatively fast
- Poor accuracy
- Small $t \Rightarrow$ cancellation errors
- Large $t \Rightarrow$ approximation errors
- Rule of thumb: $t \approx \sqrt{\epsilon}$, where ϵ is f accuracy, typically $\approx 10^{-16}$

Finite differences

Consider a function $f: \mathbb{R}^{n_{x}} \rightarrow \mathbb{R}^{n_{y}}$ with Jacobian $J(x)=\frac{\partial f}{\partial x}$

$$
J(x) \hat{x} \approx \frac{f(x+t \hat{x})-f(x)}{t}
$$

Pros and cons:

+ Really easy to implement
+ Relatively fast
- Poor accuracy
- Small $t \Rightarrow$ cancellation errors
- Large $t \Rightarrow$ approximation errors
- Rule of thumb: $t \approx \sqrt{\epsilon}$, where ϵ is f accuracy, typically $\approx 10^{-16}$
- No efficient way to calculate $\hat{y}^{\top} J(x)$

Complex step differentiation ("Imaginary trick")

Finite differences with imaginary perturbation:

$$
J(x) \hat{x} \approx \mathfrak{R}\left(\frac{f(x+i t \hat{x})-f(x)}{i t}\right)
$$

Complex step differentiation ("Imaginary trick")

Finite differences with imaginary perturbation:

$$
J(x) \hat{x} \approx \Re\left(\frac{f(x+i t \hat{x})-f(x)}{i t}\right)=-\frac{\Im(f(x+i t \hat{x}))}{t}
$$

Pros and cons:

Complex step differentiation ("Imaginary trick")

Finite differences with imaginary perturbation:

$$
J(x) \hat{x} \approx \mathfrak{R}\left(\frac{f(x+i t \hat{x})-f(x)}{i t}\right)=-\frac{\mathfrak{I}(f(x+i t \hat{x}))}{t}
$$

Pros and cons:

+ Really easy to implement in MATLAB, Python

Complex step differentiation ("Imaginary trick")

Finite differences with imaginary perturbation:

$$
J(x) \hat{x} \approx \Re\left(\frac{f(x+i t \hat{x})-f(x)}{i t}\right)=-\frac{\Im(f(x+i t \hat{x}))}{t}
$$

Pros and cons:

+ Really easy to implement in MATLAB, Python
+ Relatively fast

Complex step differentiation ("Imaginary trick")

Finite differences with imaginary perturbation:

$$
J(x) \hat{x} \approx \mathfrak{R}\left(\frac{f(x+i t \hat{x})-f(x)}{i t}\right)=-\frac{\Im(f(x+i t \hat{x}))}{t}
$$

Pros and cons:

+ Really easy to implement in MATLAB, Python
+ Relatively fast
+ Good accuracy (no cancellation errors $\Rightarrow t$ small)

Complex step differentiation ("Imaginary trick")

Finite differences with imaginary perturbation:

$$
J(x) \hat{x} \approx \mathfrak{R}\left(\frac{f(x+i t \hat{x})-f(x)}{i t}\right)=-\frac{\Im(f(x+i t \hat{x}))}{t}
$$

Pros and cons:

+ Really easy to implement in MATLAB, Python
+ Relatively fast
+ Good accuracy (no cancellation errors $\Rightarrow t$ small)
- Error prone, e.g. x^y

Complex step differentiation ("Imaginary trick")

Finite differences with imaginary perturbation:

$$
J(x) \hat{x} \approx \mathfrak{R}\left(\frac{f(x+i t \hat{x})-f(x)}{i t}\right)=-\frac{\Im(f(x+i t \hat{x}))}{t}
$$

Pros and cons:

+ Really easy to implement in MATLAB, Python
+ Relatively fast
+ Good accuracy (no cancellation errors $\Rightarrow t$ small)
- Error prone, e.g. $\mathrm{x}^{\wedge} \mathrm{y}$
- Restricted

Complex step differentiation ("Imaginary trick")

Finite differences with imaginary perturbation:

$$
J(x) \hat{x} \approx \mathfrak{R}\left(\frac{f(x+i t \hat{x})-f(x)}{i t}\right)=-\frac{\Im(f(x+i t \hat{x}))}{t}
$$

Pros and cons:

+ Really easy to implement in MATLAB, Python
+ Relatively fast
+ Good accuracy (no cancellation errors $\Rightarrow t$ small)
- Error prone, e.g. $\mathrm{x}^{\wedge} \mathrm{y}$
- Restricted
- No efficient way to calculate $\hat{y}^{\top} J(x)$

Outline

(1) Calculating derivatives
(2) Algorithmic differentiation
(3) Jacobians and Hessians

4 Software
(5) Summary

Decomposable function: $y=F(x)$

Decomposable function: $y=F(x)$

- $F: \mathbb{R}^{n_{0}} \rightarrow \mathbb{R}^{n_{K}}$ sufficiently smooth

Decomposable function: $y=F(x)$

- $F: \mathbb{R}^{n_{0}} \rightarrow \mathbb{R}^{n_{K}}$ sufficiently smooth
- Decompose into "atomic operations" which we know how to differentiate:
$z_{0} \leftarrow x$
for $k=1, \ldots, K$ do $z_{k} \leftarrow f_{k}\left(\left\{z_{i}\right\}_{i \in \mathcal{I}_{k}}\right)$ end for
$y \leftarrow z_{K}$
return y

Decomposable function: $y=F(x)$

- $F: \mathbb{R}^{n_{0}} \rightarrow \mathbb{R}^{n_{K}}$ sufficiently smooth
- Decompose into "atomic operations" which we know how to differentiate:
$z_{0} \leftarrow x$
for $k=1, \ldots, K$ do $z_{k} \leftarrow f_{k}\left(\left\{z_{i}\right\}_{i \in \mathcal{I}_{k}}\right)$ end for
$y \leftarrow z_{K}$ return y

Such a decomposition is always available if F written as a computer program!

Decomposable function: $y=F(x)$

- $F: \mathbb{R}^{n_{0}} \rightarrow \mathbb{R}^{n_{K}}$ sufficiently smooth
- Decompose into "atomic operations" which we know how to differentiate:
$z_{0} \leftarrow x$
for $k=1, \ldots, K$ do $z_{k} \leftarrow f_{k}\left(\left\{z_{i}\right\}_{i \in \mathcal{I}_{k}}\right)$ end for
$y \leftarrow z_{K}$
return y

Such a decomposition is always available if F written as a computer program!

Example

$$
y=\sin (\sqrt{x})
$$

$$
\begin{aligned}
& z_{0} \leftarrow x \\
& z_{1}=\sqrt{z_{0}} \\
& z_{2}=\sin z_{1} \\
& y \leftarrow z_{2} \\
& \text { return } y
\end{aligned}
$$

- Decomposition can be with simple scalar operations ...
- Decomposition can be with simple scalar operations ...
- $x+y, x * y, \sin (x), x^{y}$
- Decomposition can be with simple scalar operations ...
- $x+y, x * y, \sin (x), x^{y}$
- Usual case in software
- Decomposition can be with simple scalar operations ...
- $x+y, x * y, \sin (x), x^{y}$
- Usual case in software
- ... or with more general operations
- Decomposition can be with simple scalar operations...
- $x+y, x * y, \sin (x), x^{y}$
- Usual case in software
- ... or with more general operations
- $x^{\top}, x[i]=y, X Y, e^{X}$
- Decomposition can be with simple scalar operations...
- $x+y, x * y, \sin (x), x^{y}$
- Usual case in software
- ... or with more general operations
- $x^{\top}, x[i]=y, X Y, e^{X}$
- E.g. gradient of $\operatorname{det}(X)$:
- Decomposition can be with simple scalar operations...
- $x+y, x * y, \sin (x), x^{y}$
- Usual case in software
- ... or with more general operations
- $x^{\top}, x[i]=y, X Y, e^{X}$
- E.g. gradient of $\operatorname{det}(X): \operatorname{det}(X) X^{-\top}$
- Decomposition can be with simple scalar operations...
- $x+y, x * y, \sin (x), x^{y}$
- Usual case in software
- ... or with more general operations
- $x^{\top}, x[i]=y, X Y, e^{X}$
- E.g. gradient of $\operatorname{det}(X): \operatorname{det}(X) X^{-\top}$
- In e.g. CasADi
- Decomposition can be with simple scalar operations...
- $x+y, x * y, \sin (x), x^{y}$
- Usual case in software
- ... or with more general operations
- $x^{\top}, x[i]=y, X Y, e^{X}$
- E.g. gradient of $\operatorname{det}(X): \operatorname{det}(X) X^{-\top}$
- In e.g. CasADi
- Derivative propagation rules exist for
- Decomposition can be with simple scalar operations...
- $x+y, x * y, \sin (x), x^{y}$
- Usual case in software
- ... or with more general operations
- $x^{\top}, x[i]=y, X Y, e^{X}$
- E.g. gradient of $\operatorname{det}(X): \operatorname{det}(X) X^{-\top}$
- In e.g. CasADi
- Derivative propagation rules exist for
- ODE/DAE integrators, "sensitivity analysis"
- Decomposition can be with simple scalar operations...
- $x+y, x * y, \sin (x), x^{y}$
- Usual case in software
- ... or with more general operations
- $x^{\top}, x[i]=y, X Y, e^{X}$
- E.g. gradient of $\operatorname{det}(X): \operatorname{det}(X) X^{-\top}$
- In e.g. CasADi
- Derivative propagation rules exist for
- ODE/DAE integrators, "sensitivity analysis"
- Linear and nonlinear systems of equations

Differentiate the algorithm!

Differentiate the algorithm!

$z_{0} \leftarrow x$
for $k=1, \ldots, K$ do
$\quad z_{k} \leftarrow f_{k}\left(\left\{z_{i}\right\}_{i \in \mathcal{I}_{k}}\right)$
end for
$y \leftarrow z_{K}$
return y

$$
\begin{aligned}
& z_{0} \leftarrow x \\
& \frac{d z_{0}}{d x} \leftarrow I \\
& \text { for } k=1, \ldots, K \text { do } \\
& \qquad z_{k} \leftarrow f_{k}\left(\left\{z_{i}\right\}_{\left.i \in \mathcal{I}_{k}\right)}\right. \\
& \qquad \frac{d z_{k}}{d x} \leftarrow \sum_{i \in \mathcal{I}_{k}} \frac{\partial f_{k}}{\partial z_{i}}\left(\left\{z_{i}\right\}_{i \in \mathcal{I}_{k}}\right) \frac{d z_{i}}{d x} \\
& \text { end for } \\
& y \leftarrow z_{K} \\
& J \leftarrow \frac{d z_{K}}{d x} \\
& \text { return } y, J
\end{aligned}
$$

Differentiate the algorithm!

$z_{0} \leftarrow x$
for $k=1, \ldots, K$ do
$\quad z_{k} \leftarrow f_{k}\left(\left\{z_{i}\right\}_{i \in \mathcal{I}_{k}}\right)$
end for
$y \leftarrow z_{k}$
return y

\Longrightarrow| $z_{0} \leftarrow x$
 $\frac{d z_{0}}{d x} \leftarrow I$
 for $k=1, \ldots, K$ do
 $z_{k} \leftarrow f_{k}\left(\left\{z_{i}\right\}_{i \in \mathcal{I}_{k}}\right)$
 $\frac{d z_{k}}{d x} \leftarrow \sum_{i \in \mathcal{I}_{k}} \frac{\partial f_{k}}{\partial z_{i}}\left(\left\{z_{i}\right\}_{i \in \mathcal{I}_{k}}\right) \frac{d z_{i}}{d x}$
 end for
 $y \leftarrow z_{K}$
 $J \leftarrow \frac{d z_{K}}{d x}$
 return y, J |
| :--- |

Write as a system of linear equations:

$$
\frac{d z}{d x}=B+L \frac{d z}{d x}, \quad J=A^{\top} \frac{d z}{d x}
$$

Write as a system of linear equations:

$$
\frac{d z}{d x}=B+L \frac{d z}{d x}, \quad J=A^{\top} \frac{d z}{d x}
$$

Write as a system of linear equations:

$$
\frac{d z}{d x}=B+L \frac{d z}{d x}, \quad J=A^{\top} \frac{d z}{d x}
$$

with

$$
z=\left(\begin{array}{c}
z_{0} \\
z_{1} \\
\vdots \\
z_{K}
\end{array}\right), \quad A=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{c}
l \\
0 \\
\vdots \\
0
\end{array}\right)
$$

with I and 0 of appropriate dimensions, as well as the extended Jacobian,

$$
L=\left(\begin{array}{cccc}
0 & \cdots & \cdots & 0 \\
\frac{\partial f_{1}}{\partial z_{0}} & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
\frac{\partial f_{K}}{\partial z_{0}} & \cdots & \frac{\partial f_{K}}{\partial z_{K-1}} & 0
\end{array}\right)
$$

Write as a system of linear equations:

$$
\frac{d z}{d x}=B+L \frac{d z}{d x}, \quad J=A^{\top} \frac{d z}{d x}
$$

with

$$
z=\left(\begin{array}{c}
z_{0} \\
z_{1} \\
\vdots \\
z_{K}
\end{array}\right), \quad A=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

with I and 0 of appropriate dimensions, as well as the extended Jacobian,

$$
L=\left(\begin{array}{cccc}
0 & \cdots & \cdots & 0 \\
\frac{\partial f_{1}}{\partial z_{0}} & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
\frac{\partial f_{K}}{\partial z_{0}} & \cdots & \frac{\partial f_{k}}{\partial z_{k-1}} & 0
\end{array}\right),
$$

Since $I-L$ is invertible, we can solve for J :

$$
J=A^{\top}(I-L)^{-1} B
$$

- Have $J=A^{\top}(I-L)^{-1} B$
- Have $J=A^{\top}(I-L)^{-1} B$
- Multiply J from the right:
- Have $J=A^{\top}(I-L)^{-1} B$
- Multiply J from the right:
- $\hat{y}:=J \hat{x}=A^{\top}(I-L)^{-1} B \hat{x}$
- Have $J=A^{\top}(I-L)^{-1} B$
- Multiply J from the right:
- $\hat{y}:=J \hat{x}=A^{\top}(I-L)^{-1} B \hat{x}$
- Cheap with forward substitution of lower triangular (I-L)
- Have $J=A^{\top}(I-L)^{-1} B$
- Multiply J from the right:
- $\hat{y}:=J \hat{x}=A^{\top}(I-L)^{-1} B \hat{x}$
- Cheap with forward substitution of lower triangular (I-L)
- No storage of L needed
- Have $J=A^{\top}(I-L)^{-1} B$
- Multiply J from the right:
- $\hat{y}:=J \hat{x}=A^{\top}(I-L)^{-1} B \hat{x}$
- Cheap with forward substitution of lower triangular (I-L)
- No storage of L needed
- Forward mode of AD
- Have $J=A^{\top}(I-L)^{-1} B$
- Multiply J from the right:
- $\hat{y}:=J \hat{x}=A^{\top}(I-L)^{-1} B \hat{x}$
- Cheap with forward substitution of lower triangular (I-L)
- No storage of L needed
- Forward mode of AD
- Multiply J from the left:
- Have $J=A^{\top}(I-L)^{-1} B$
- Multiply J from the right:
- $\hat{y}:=J \hat{x}=A^{\top}(I-L)^{-1} B \hat{x}$
- Cheap with forward substitution of lower triangular (I-L)
- No storage of L needed
- Forward mode of AD
- Multiply J from the left:
- $\bar{x}:=J^{\top} \bar{y}=B^{\top}(I-L)^{-\top} A \bar{y}$
- Have $J=A^{\top}(I-L)^{-1} B$
- Multiply J from the right:
- $\hat{y}:=J \hat{x}=A^{\top}(I-L)^{-1} B \hat{x}$
- Cheap with forward substitution of lower triangular (I-L)
- No storage of L needed
- Forward mode of AD
- Multiply J from the left:
- $\bar{x}:=J^{\top} \bar{y}=B^{\top}(I-L)^{-\top} A \bar{y}$
- Cheap with backward substitution of upper triangular $(I-L)^{\top}$
- Have $J=A^{\top}(I-L)^{-1} B$
- Multiply J from the right:
- $\hat{y}:=J \hat{x}=A^{\top}(I-L)^{-1} B \hat{x}$
- Cheap with forward substitution of lower triangular (I-L)
- No storage of L needed
- Forward mode of AD
- Multiply J from the left:
- $\bar{x}:=J^{\top} \bar{y}=B^{\top}(I-L)^{-\top} A \bar{y}$
- Cheap with backward substitution of upper triangular $(I-L)^{\top}$
- Storage of L needed
- Have $J=A^{\top}(I-L)^{-1} B$
- Multiply J from the right:
- $\hat{y}:=J \hat{x}=A^{\top}(I-L)^{-1} B \hat{x}$
- Cheap with forward substitution of lower triangular (I-L)
- No storage of L needed
- Forward mode of AD
- Multiply J from the left:
- $\bar{x}:=J^{\top} \bar{y}=B^{\top}(I-L)^{-\top} A \bar{y}$
- Cheap with backward substitution of upper triangular $(I-L)^{\top}$
- Storage of L needed
- Reverse mode of AD

Forward mode of AD

Forward mode of AD

- Calculate Jacobian-times-vector product cheaply

Forward mode of AD

- Calculate Jacobian-times-vector product cheaply
- Computational cost: \approx cost of evaluating F

Forward mode of AD

- Calculate Jacobian-times-vector product cheaply
- Computational cost: \approx cost of evaluating F
- Small memory requirements

Forward mode of AD

- Calculate Jacobian-times-vector product cheaply
- Computational cost: \approx cost of evaluating F
- Small memory requirements

Reverse mode of AD

Forward mode of AD

- Calculate Jacobian-times-vector product cheaply
- Computational cost: \approx cost of evaluating F
- Small memory requirements

Reverse mode of $A D$

- Calculate vector-times-Jacobian product cheaply

Forward mode of AD

- Calculate Jacobian-times-vector product cheaply
- Computational cost: \approx cost of evaluating F
- Small memory requirements

Reverse mode of $A D$

- Calculate vector-times-Jacobian product cheaply
- In particular: Gradient of scalar-valued f cheap!

Forward mode of AD

- Calculate Jacobian-times-vector product cheaply
- Computational cost: \approx cost of evaluating F
- Small memory requirements

Reverse mode of $A D$

- Calculate vector-times-Jacobian product cheaply
- In particular: Gradient of scalar-valued f cheap!
- Computational cost: \approx cost of evaluating F

Forward mode of AD

- Calculate Jacobian-times-vector product cheaply
- Computational cost: \approx cost of evaluating F
- Small memory requirements

Reverse mode of $A D$

- Calculate vector-times-Jacobian product cheaply
- In particular: Gradient of scalar-valued f cheap!
- Computational cost: \approx cost of evaluating F
- Intermediate operations (or their linearization) must be stored

Forward mode of AD

- Calculate Jacobian-times-vector product cheaply
- Computational cost: \approx cost of evaluating F
- Small memory requirements

Reverse mode of $A D$

- Calculate vector-times-Jacobian product cheaply
- In particular: Gradient of scalar-valued f cheap!
- Computational cost: \approx cost of evaluating F
- Intermediate operations (or their linearization) must be stored
- Can trade storage for extra computation ("checkpointing")

Outline

(1) Calculating derivatives
(2) Algorithmic differentiation
(3) Jacobians and Hessians

4 Software
(5) Summary

Calculating complete Jacobians and Hessians

Calculating complete Jacobians and Hessians

- Jacobians can be calculated by multiplying with $n_{\text {col }}$ vectors from the right or $n_{\text {row }}$ vectors from the left

Calculating complete Jacobians and Hessians

- Jacobians can be calculated by multiplying with $n_{\text {col }}$ vectors from the right or $n_{\text {row }}$ vectors from the left
- Worst-case: $\approx \min \left(n_{\text {row }}, n_{\text {col }}\right)$ times cost of evaluating F

Calculating complete Jacobians and Hessians

- Jacobians can be calculated by multiplying with $n_{\text {col }}$ vectors from the right or $n_{\text {row }}$ vectors from the left
- Worst-case: $\approx \min \left(n_{\text {row }}, n_{\text {col }}\right)$ times cost of evaluating F
- Much cheaper if J is sparse, e.g. banded

Calculating complete Jacobians and Hessians

- Jacobians can be calculated by multiplying with $n_{\text {col }}$ vectors from the right or $n_{\text {row }}$ vectors from the left
- Worst-case: $\approx \min \left(n_{\text {row }}, n_{\text {col }}\right)$ times cost of evaluating F
- Much cheaper if J is sparse, e.g. banded
- Requires prior knowledge of sparsity pattern (automation possible)

Calculating complete Jacobians and Hessians

- Jacobians can be calculated by multiplying with $n_{\text {col }}$ vectors from the right or $n_{\text {row }}$ vectors from the left
- Worst-case: $\approx \min \left(n_{\text {row }}, n_{\text {col }}\right)$ times cost of evaluating F
- Much cheaper if J is sparse, e.g. banded
- Requires prior knowledge of sparsity pattern (automation possible)
- Hessians can be calculated as Jacobian-of-gradient

Calculating complete Jacobians and Hessians

- Jacobians can be calculated by multiplying with $n_{\text {col }}$ vectors from the right or $n_{\text {row }}$ vectors from the left
- Worst-case: $\approx \min \left(n_{\text {row }}, n_{\text {col }}\right)$ times cost of evaluating F
- Much cheaper if J is sparse, e.g. banded
- Requires prior knowledge of sparsity pattern (automation possible)
- Hessians can be calculated as Jacobian-of-gradient
- Symmetry can be exploited

Calculating complete Jacobians and Hessians

- Jacobians can be calculated by multiplying with $n_{\text {col }}$ vectors from the right or $n_{\text {row }}$ vectors from the left
- Worst-case: $\approx \min \left(n_{\text {row }}, n_{\text {col }}\right)$ times cost of evaluating F
- Much cheaper if J is sparse, e.g. banded
- Requires prior knowledge of sparsity pattern (automation possible)
- Hessians can be calculated as Jacobian-of-gradient
- Symmetry can be exploited
- Much cheaper if H is sparse

Outline

(1) Calculating derivatives
(2) Algorithmic differentiation
(3) Jacobians and Hessians
(4) Software

Generic tools to differentiate "black-box" code

Generic tools to differentiate "black-box" code

- Language-specific: www.autodiff.org

Generic tools to differentiate "black-box" code

- Language-specific: www.autodiff.org
- ADOL-C, ADIC, CppAD for C/C++

Generic tools to differentiate "black-box" code

- Language-specific: www.autodiff.org
- ADOL-C, ADIC, CppAD for C/C++
- ADIFOR, TAPENADE for FORTRAN

Generic tools to differentiate "black-box" code

- Language-specific: www. autodiff.org
- ADOL-C, ADIC, CppAD for C/C++
- ADIFOR, TAPENADE for FORTRAN

AD implemented inside other tools

Generic tools to differentiate "black-box" code

- Language-specific: www. autodiff.org
- ADOL-C, ADIC, CppAD for C/C++
- ADIFOR, TAPENADE for FORTRAN

AD implemented inside other tools

- CasADi

Generic tools to differentiate "black-box" code

- Language-specific: www. autodiff.org
- ADOL-C, ADIC, CppAD for C/C++
- ADIFOR, TAPENADE for FORTRAN

AD implemented inside other tools

- CasADi
- AMPL, GAMS: Algebraic modelling languages

Outline

(1) Calculating derivatives
(2) Algorithmic differentiation
(3) Jacobians and Hessians

4 Software
(5) Summary

Key points

Key points

- Jacobian-times-vector products can be calculated cheaply

Key points

- Jacobian-times-vector products can be calculated cheaply
- Important special case: gradient of a scalar-valued function

Key points

- Jacobian-times-vector products can be calculated cheaply
- Important special case: gradient of a scalar-valued function
- Complete Jacobians and Hessians: depends on sparsity pattern.

Key points

- Jacobian-times-vector products can be calculated cheaply
- Important special case: gradient of a scalar-valued function
- Complete Jacobians and Hessians: depends on sparsity pattern.

Worse case: $\approx \min \left(n_{\text {row }}, n_{\text {col }}\right)$ times cost of evaluating F

Key points

- Jacobian-times-vector products can be calculated cheaply
- Important special case: gradient of a scalar-valued function
- Complete Jacobians and Hessians: depends on sparsity pattern.

Worse case: $\approx \min \left(n_{\text {row }}, n_{\text {col }}\right)$ times cost of evaluating F

- Good software exists

Key points

- Jacobian-times-vector products can be calculated cheaply
- Important special case: gradient of a scalar-valued function
- Complete Jacobians and Hessians: depends on sparsity pattern.

Worse case: $\approx \min \left(n_{\text {row }}, n_{\text {col }}\right)$ times cost of evaluating F

- Good software exists

Literature

Griewank \& Walther, Evaluating Derivatives (2008)

