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Methods for calculating derivatives

By hand ← Time consuming & error prone!

Symbolic differentiation

Finite difference approximation

Complex step differentiation (“Imaginary trick”)

Automatic differentiation (AD)
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Symbolic differentiation

We can obtain an expression of the derivatives we need with:

Mathematica

Maple

Symbolic Toolbox for MATLAB

SymPy

. . .

Often this results in a very long code which is
expensive to evaluate.
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Finite differences

Consider a function f : Rnx → Rny with Jacobian J(x) =
∂f

∂x

J(x) x̂ ≈ f (x + t x̂)− f (x)

t

Pros and cons:

+ Really easy to implement

+ Relatively fast

− Poor accuracy

I Small t ⇒ cancellation errors
I Large t ⇒ approximation errors
I Rule of thumb: t ≈

√
ε, where ε is f accuracy, typically ≈ 10−16

− No efficient way to calculate ŷT J(x)
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Complex step differentiation (“Imaginary trick”)

Finite differences with imaginary perturbation:

J(x) x̂ ≈ R

(
f (x + i t x̂)− f (x)

i t

)

= −I(f (x + i t x̂))

t

Pros and cons:

+ Really easy to implement in MATLAB, Python

+ Relatively fast

+ Good accuracy (no cancellation errors ⇒ t small)

− Error prone, e.g. x^y

− Restricted

− No efficient way to calculate ŷT J(x)
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Decomposable function: y = F (x)

F : Rn0 → RnK sufficiently smooth

Decompose into “atomic operations” which we know how to differentiate:
z0 ← x
for k = 1, . . . ,K do

zk ← fk ({zi}i∈Ik )
end for
y ← zK
return y

Such a decomposition is always
available if F written as a computer
program!

Example

y = sin(
√
x)

z0 ← x
z1 =

√
z0

z2 = sin z1

y ← z2

return y
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Decomposition can be with simple scalar operations . . .

I x + y , x ∗ y , sin(x), xy

I Usual case in software

. . . or with more general operations

I xT, x [i ] = y , XY , eX

I E.g. gradient of det(X ): det(X )X−T

I In e.g. CasADi

Derivative propagation rules exist for

I ODE/DAE integrators, “sensitivity analysis”
I Linear and nonlinear systems of equations
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Differentiate the algorithm!

z0 ← x
for k = 1, . . . ,K do

zk ← fk ({zi}i∈Ik )
end for
y ← zK
return y

⇒

z0 ← x
dz0

dx
← I

for k = 1, . . . ,K do
zk ← fk ({zi}i∈Ik )

dzk
dx
←
∑
i∈Ik

∂fk
∂zi

({zi}i∈Ik )
dzi
dx

end for
y ← zK

J ← dzK
dx

return y , J

Write as a system of linear equations:

dz

dx
= B + L

dz

dx
, J = AT dz

dx
,
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Write as a system of linear equations:

dz

dx
= B + L

dz

dx
, J = AT dz

dx
,

with

z =


z0

z1

...
zK

 , A =


0
...
0
I

 and B =


I
0
...
0

 ,

with I and 0 of appropriate dimensions, as well as the extended Jacobian,

L =


0 . . . . . . 0

∂f1
∂z0

. . .
...

...
. . .

. . .
...

∂fK
∂z0

. . . ∂fK
∂zK−1

0

 ,

Since I − L is invertible, we can solve for J:

J = AT (I − L)−1 B
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Have J = AT (I − L)−1 B

Multiply J from the right:

I ŷ := J x̂ = AT (I − L)−1 B x̂
I Cheap with forward substitution of lower triangular (I − L)
I No storage of L needed
I Forward mode of AD

Multiply J from the left:

I x̄ := JT ȳ = BT (I − L)−T A ȳ
I Cheap with backward substitution of upper triangular (I − L)T

I Storage of L needed
I Reverse mode of AD
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I ŷ := J x̂ = AT (I − L)−1 B x̂
I Cheap with forward substitution of lower triangular (I − L)

I No storage of L needed
I Forward mode of AD

Multiply J from the left:
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I ŷ := J x̂ = AT (I − L)−1 B x̂
I Cheap with forward substitution of lower triangular (I − L)
I No storage of L needed
I Forward mode of AD

Multiply J from the left:
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Forward mode of AD

Calculate Jacobian-times-vector product cheaply

Computational cost: ≈ cost of evaluating F

Small memory requirements

Reverse mode of AD

Calculate vector-times-Jacobian product cheaply

In particular: Gradient of scalar-valued f cheap!

Computational cost: ≈ cost of evaluating F

Intermediate operations (or their linearization) must be stored

Can trade storage for extra computation (“checkpointing”)
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Calculating complete Jacobians and Hessians

Jacobians can be calculated by multiplying with ncol vectors from the right
or nrow vectors from the left

Worst-case: ≈ min(nrow, ncol) times cost of evaluating F

Much cheaper if J is sparse, e.g. banded

Requires prior knowledge of sparsity pattern (automation possible)

Hessians can be calculated as Jacobian-of-gradient

Symmetry can be exploited

Much cheaper if H is sparse
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Generic tools to differentiate “black-box” code

Language-specific: www.autodiff.org

ADOL-C, ADIC, CppAD for C/C++

ADIFOR, TAPENADE for FORTRAN

AD implemented inside other tools

CasADi

AMPL, GAMS: Algebraic modelling languages
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Key points

Jacobian-times-vector products can be calculated cheaply

I Important special case: gradient of a scalar-valued function

Complete Jacobians and Hessians: depends on sparsity pattern.

I Worse case: ≈ min(nrow, ncol) times cost of evaluating F

Good software exists

Literature

Griewank & Walther, Evaluating Derivatives (2008)
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