Numerical Optimal Control and Airborne Wind Energy

Moritz Diehl

Control and Optimization Laboratory Department of Microsystems Engineering (IMTEK) Albert Ludwig University of Freiburg und Electrical Engineering Department (ESAT-STADIUS) and Optimization in Engineering Center (OPTEC) KU Leuven University, Belgium

RG

KU L

Complex Sensor Actuator Systems

SENSORS

- GPS
- acceleration
- radar
- vision

....

How to connect ?

flight surfaces
steering wheel
motor speeds
joint torques

...

Aim: Optimally Operating Sensor Actuator Systems

- GPS
- acceleration
- radar
- vision

. . .

flight surfaces
steering wheel
motor speeds
joint torques

ACTUATORS

Open Source Software Tools from the Control and Optimization Laboratory

under industry friendly LGPL license

- **qpOASES:** dense quadratic programming [Joachim Ferreau, ...]
- **qpDUNES:** sparse quadratic programming [Janick Frasch, ...]
- ACADO: nonlinear MPC [Boris Houska, Joachim Ferreau, Milan Vukov, Rien Quirynen, Robin Verscheuren, ...]
- **CasADi:** modelling environment for dynamic optimization [Joel Andersson, Joris Gillis, Greg Horn, ...]

ACADO - Computational Choices

- I) Keep states in problem use direct multiple shooting [1]
- 2) Exploit convexity via Generalized Gauss-Newton [2]
- 3) Use tangential predictors for short feedback delay [3]
- 4) Iterate while problem changes (Real-Time Iterations) [4]
- 5) Auto-generate custom solvers in plain-C [5,6] (no if, no malloc)

Bock & Plitt, IFAC WC, 1984
 Bock 1983
 Bock et al, Ascona, 1999
 D. et al., J. Proc. Cont, 2002
 Mattingley & Boyd, Automatic code generation for real-time convex optimization, 2009

Time-optimal ''racing'' of model cars

Univ. Leuven/ETH & LMS [Robin Verscheuren] (ACADO)

CasADi

- "Computer Algebra System for Automatic Differentiation"
- Implements AD on sparse matrix-valued computational graphs
- Open-source tool (LGPL): www.casadi.org, developed by Joel Andersson and Joris Gillis
- Front-ends to C++, Python and Octave

- Symbolic model import from Modelica (via Jmodelica.org)
- Interfaces to: SUNDIALS, CPLEX, qpOASES, IPOPT, KNITRO,
- "Write efficient optimal control solver in a few lines"

Time-optimal "drawing" by crane

Univ. Leuven [Wannes Van Loock et al.,] (CasADi)

AIRBORNE WIND ENERGY

Wind power grows cubically with wind speed

energy content of air with different wind speed

Doubling the wind speed leads to 8 x more power

Higher-up the wind is stronger

histogram of wind speeds at heights of 100m and 500m

Wind speed in 100m [hlack] and 500m [grev] in De Rilt (NII.) [Fagiano 2009]

Power: Force x Wind Speed

"No wind power without force against the wind"

Power extracted from the wind = $Force \times Wind Speed$

a cable can deliver the necessary force efficiently

17

a cable can deliver the necessary force efficiently

Metamorphosis of a wind turbine

The Crosswind Effect

- wind lets kite fly fast circles
- kite flies orthogonal to wind
- strong tension force in tether, growing quadratically with kite speed

But where can we place a generator ?

(''kite'' = any flying object on a tether)

Variant I: Drag Mode (airborne generation)

• relative wind drives small wind turbine on board of the kite

• cable transmits electricity to ground

Advantage: small, fast spinning generator Disadvantage: high voltage cable needed

Variant 2: Lift Mode (ground-based generation)

Pumping cycle with two phases:

- Production phase:
 - fly kite fast, get high cable tension
 - unroll cable from drum
 - drum drives electric generator

Variant 2: Lift Mode (ground-based generation)

Pumping cycle with two phases:

- Production phase:
 - fly kite fast, get high cable tension
 - unroll cable from drum
 - drum drives electric generator
- Retraction phase:
 - fly kite slow, get low cable tension
 - roll-in cable

Advantage: electric machine on ground Disadvantage: slow, heavy generator needed (like conventional wind turbines)

Which cable unrolling speed is optimal ?

Maximal power reached at 1/3 of wind speed

Note: kite flies much faster than wind speed, depending on its aerodynamic efficiency. The faster, the more tension force in the line.

24

Pumping Cycle to Harvest Wind Power

Pumping Cycle to Harvest Wind Power

Which cable unrolling speed is optimal?

too slow:generator does not turntoo fast:kite ''sees'' relatively less wind, cable tension too smalloptimum:I/3 of wind speed (note: plane flies much faster)

[AmpyxPower]

Loyd's Formula

J. ENERGY

VOL. 4, NO. 3 ARTICLE NO. 80-4075

Crosswind Kite Power

Miles L. Loyd* Lawrence Livermore National Laboratory, Livermore, Calif.

 $P = \frac{2}{27} \rho A w^3 C_{\rm L} \left(\frac{C_{\rm L}}{C_{\rm L}} \right)$

power

air density

wing area

wind speed

Lift-over-drag ratio (L/D) A

w

wing area of **I** m² generates **40 kW** power (at 13 m/s wind speed and L/D of 15). Same efficiency for drag and lift mode.

27

Last September in Berlin.

AIRBORNE 2013

WIND ENERGY

The Company AmpyxPower

- startup from TU Delft, since 2008
- 10 permanent staff
- financed via venture capital, KLM, statkraft, ...

Concept: pomp cyclus met vaste vleugel

AmpyxPower: Autonomous Energy Harvesting Flight

MODEL BASED CONTROL OF TETHERED AIRPLANES (LEUVEN / FREIBURG)

Differential Algebraic Equation (DAE) Model of Tethered Airplane

33

Computing a Power Optimal Orbit

optimization algorithm at work [Greg Horn]

w0: 10.0 iter: 1 endTime: 25.3343874701 average power: 540.342156108 W

HHHHHHH

Experiments with Predictive Flight Control

[mit Milan Vukov, Kurt Geebelen, Andrew Wagner, Mario Zanon, Sebastien Gros, Greg Horn, Jan Swevers]

Aim: Transition from Rotation to Power Orbit

Model Predictive Control in Practice

2x EMBEDDED OPTIMIZATION SENSORS STATE-ACTUATORS **ESTIMATION** Data Fitting on Moving Horizon acceleration • elevator aileron • gyros MODEL vision • winch motor PREDICTIVE immini CONTROL

Prediction & Estimation Horizons in Flight Experiment (ACADO)

Experimente mit Moving Horizon Estimation

subtitle

40

SUMMARY

• embedded optimization uses more CPU time than classical filters, but allows the development of more powerful nonlinear control and estimation algorithms

• examples are time-optimal or power-optimal model predictive control (of cranes, robots, cars, tethered airplanes...)

• good numerical methods can solve nonlinear optimal control problems at millisecond sampling rates

need accurate and differentiable ODE or DAE models

Our Vision: replace tons of steel and concrete...

Our Vision: replace tons of steel and concrete... ...by a cable and intelligent control

Laborexperimente mit prädiktiver Flugregelung

[mit Kurt Geebelen, Andrew Wagner, Milan Vukov, Mario Zanon, Sebastien Gros, Greg Horn, Jan Swevers]

45

Outdoors Carousel Tests

