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Kurzzusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der linearen Regelung im Zu-
standsraum. Angewandt wird die Regelung auf ein Karussell, das durch
seine Rotation einen mit einer Leine am Karussell befestigten Ball anhebt �
etwa wie bei einem Kettenkraussell. Zur Regelung wird das System zunächst
linearisiert. Dann wird ein Discrete Quadratic Regulator verwendet, um
am Punkt der Linearisierung eine optimale Regelungsvorschrift abzuleiten.
Zur Komplementierung des Zustandsreglers wird ein Kalman Filter zur Zu-
standsschätzung eingeführt. Dazu kommen noch einige Erweiterungen, um
den Zustandsregler robuster gegenüber Modellierungsfehlern zu machen. Nach-
dem der Regler in Simulationen hinreichend getestet wurde, wird er im
tatsächlichen Versuchsaufbau implementiert und getestet. Da dieser letzte
Schritt nicht in den zeitlichen Rahmen der Arbeit passt, endet sie stattdessen
mit einer Skizze der geplanten Experimente.

Abstract

This thesis concers itself with linear state space control. The control in
question is applied to a carousel that lifts a ball tethered to the carousel arm
through rotation � just like a chairoplane. The system is �rst linearized.
Then a Discrete Quadratic Regulator is used to derive a optimal feedback law
at the point of linearization. To complement the state space controller, one
introduces a Kalman �lter for state estimation. Additionally there are some
extensions in order to make the controller more robust concerning modeling
errors. After the controller is tested su�ciently in simulation, it will be
implemented and tested on the actual experimental setup. Since this last
step could not be completed in the time frame of this thesis, there will be an
outline of the planned experiments instead.
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1 Introduction

The public's increasing awareness concerning the ecological consequences of
the last 250 years' industrial expansion has peaked in the time of catastrophes
such as the accidents in the Fukushima nuclear power plant in Japan 2011
or Chernobyl 1987 in Ukraine. These events have become a symbol for the
widespread opinion that nuclear power does not have the capacity be a clean
alternative to coal and oil as the main power source for a growing industry.
Due to the inadequacies of nuclear power, renewable energy sources such as
wind, solar energy or water have become more attractive to both consumers
and producers.

Conventional wind power has one big limitation concerning its cost�
e�ectiveness both in terms of economical and ecological factors: to harness
the wind power of stronger and more consistent high altitude winds or to
just increase the area of a wind turbine, the size of the supporting towers
also has to be increased � up to the point where the size of those towers
is not justi�ed by the amount of power produced by the turbine anymore.
This limitation seems absurd considering that the part of the wind turbine
that actually produces the power is up high in the air while the limiting part
is just there to attach and connect the turbine to the ground and absorb its
torque.

Instead of trying to solve this problem by improving an inherently lim-
ited concept, one has to think about clever alternatives. One such alternative
makes it possible to both harvest the stronger high altitude winds and de-
crease the amount of space and material needed for buildings on the ground.
The idea is to harvest the wind energy with airborne kites that are tethered
to a generator at the ground-station. The kite uses the force of the wind to
unroll the tether that is wound up on the generator's coil, thus generating
power (see Fig. 1). In order to e�ectively produce energy with this setup,
the kite must �y so called pumping cycles that are visualized in Fig. 2. First
the kite spirals outwards, rolling out the tether and thus generating energy.
Since the tether has a �nite length, the setup must reel in the tether after
a certain time, thus consuming energy. The cycle then begins anew. It is
obvious that in order to e�ectively generate power, the setup has to generate
more power in the �rst part of the cycle than it loses in the second. The
ratio of energy created to energy consumed is very much dependent on the
trajectory of the kite with respect to the wind direction.

To fully realize the potential of airborne wind energy, the kites trajec-
tory has to be automated. This makes it a control problem. The task of
controlling the kites has already been tackled with various optimal control
approaches like Nonlinear Model Predictive Control (NMPC) [18, 17, 4, 9],

1



Figure 1: Airborne kite tethered to a generator coil at the ground station [1].

Figure 2: Kite �ying a pumping cycle consisting of power generating and consuming
part. Illustration by Greg Horn.
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Moving Horizon Estimation (MHE) [18, 6] and Robust Optimal Control [15].
While most papers concern themselves with the question of how to optimally
control the kites once they are in the air, it is also important to think about
how to get them airborne. Since the kites are already tethered to a ground-
station, it seems natural to use this connection for the start-up process. To
do so, the kite can be rotated by a carousel spinning around its central axis
to lift it into the air [7, 8]. This setup has the additional advantage that the
kite does not need any on-board means of propulsion, thus making it cheaper
and easier to produce.

As a �rst step toward experimental kite start-up, the team of the High-
wind project has constructed a simpli�ed experimental setup. Instead of a
glider, a ball is attached to the carousel by means of a carbon �ber stick (that
replaces the tether). The goal of this experimental setup is to control the
height (or more precisely, the elevation angle) of the ball via the rotational
speed of the carousel. The topic of this thesis is how to achieve this goal with
the means of Linear State Space Control. The thesis content is outlined as
follows:

In Section 2 the problem is �rst approached by modeling the ball and
carousel and understanding the behavior of the open loop system. This
includes a linearization of the system in both continuous and discrete time
and a closer look at the eigenvalues and eigenvectors of the linearized system.
In Section 3 the loop is then closed in simulation using a Linear Quadratic
Regulator (LQR) complemented with a Kalman �lter for state estimation.
After showing that the LQR's performance surpasses that of a PID controller,
the control setup is re�ned some more to make it more robust in Section 4.
A pseudo-force is added to the model used for state estimation in order to
account for potential mismodeling and thus decrease the steady state error.
This is followed by a discussion of a special kind of mismodeling: using the
linearized system equations for state estimation instead of the non-linear
ones.

All computations, simulations and plots are done with MATLAB 2013b

unless otherwise speci�ed. The equations of motion for the carousel are
derived with the Symbolic Math Toolbox. For control work the Control

System Toolbox and Optimization Toolbox are used. The MATLAB func-
tion ode15s is employed to integrate the system equations. Every other
function and script written for the purpose of this thesis can be looked up in
the Appendix A. The experimental data and MATLAB �les can be downloaded
from https://github.com/thilobro/state_space_control_thesis.
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2 Modeling the Carousel

As a very �rst step the experimental setup of the carousel is discussed. This
is followed by a description of how the carousel is modeled and subsequently
linearized. After that an investigation of the carousel's open loop behavior
follows.

2.1 Experimental Setup of the Carousel

The carousel that has been constructed by Highwind is situated at the
IMTEK of the University of Freiburg. It is approximately 4 m high and
made out of aluminum (see Fig. 3). It is mounted on a steel trailer for trans-
portation and has an arm span rA of 2 m (4 m in diameter). On one end of
the arm the line angle sensor is positioned. The sensor is in turn connected
to a plastic ball by a carbon �ber rod with length lT = 1.82 m (see Fig. 4).
Also attached to the end of the carousel arm is a cradle to ensure soft and
controlled landings of the ball (and thus lessen the strain on the carbon �ber

Figure 3: Experimental setup of the carousel.
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Figure 4: Close up of the carousel's line angle sensor, cradle and ball.

stick). The carousel is rotated by a induction motor (with a gear ratio RG

of 22.29) which transfers its torque to the carousel by means of a rubber
belt. The motor torque (before the gear ratio is applied) should not exceed
20 N m. It is also possible to attach the ball to a tether instead of the carbon
�ber rod. This tether can then be extended or retracted with a winch motor.
Even though it is planned to eventually replace the rod with a tether, the
winch motor remains unused during the course of this thesis.

The carousel motor is controlled by a desktop PC stored in the electron-
ics cabinet. Also situated in the cabinet are the motor's drives and brakes
system. To conduct experiments, one generally does not use the PC directly
but via SSH. The line angle sensor measures the angular displacement of the
carbon �ber rod in two dimensions and transmits the data online to the PC.
In addition the motor measures its own rotational speed. Safety measures
include a net around the whole carousel, two �ashing red lights when the
carousel is operating and several emergency stop buttons.

2.2 Basic Properties of the Model

The model of the carousel is derived using the Lagrange formalism.1 The
generalized coordinates qi are

1. the angle of the motor δM

1The model has been derived in cooperation with Heike Dietl while writing her bachelor
thesis 'Nonlinear Dynamic System Models of Tethered Flight' [3].
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Figure 5: Coordinate system of the model. The directions of the axis are North-East-
Down.

2. the angle of the carousel arm δA

3. the elevation angle α

4. the azimuth angle β

Thus

q =


δM

δA

α
β


Fig. 5 shows how the coordinate system is chosen for the model. The North-
East-Down convention is used to assign the directions of the axes. The
de�nitions of the angles within this coordinate system are shown in Fig. 6.
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Figure 6: Angles of the model.

One assumes further that the position of the line angle sensor pLA in the
absolute coordinates is given by

pLA = rA ·

sin(δA)
cos(δA)

0


The position of the ball pBA is then given by

pBA = pLA + lT ·

cos(α) sin(δA + β)
cos(α) cos(δA + β)

− sin(α)


For the kinetic energy EK of the system, the following terms are considered

1. the translatory motion of the point mass of the ball mBA

2. the rotational motion of the carousel arm around its z axis in δA direc-
tion with moment of inertia IA

3. the rotational motion of the carousel motor around its z axis in δM

direction with moment of inertia IM

4. the rotational motion of the carbon �ber stick around the two axis at its
end point perpendicular to the stick in α and β direction with moment
of inertia IT

8



The expression for the kinetic energy is

EK =
1

2
mBAṗ

2
BA

+
1

2
IAδ̇

2
A

+
1

2
IMδ̇M

+
1

2
IT(α̇2 + β̇2)

The term for the rotational motion of the carbon �ber stick is strictly speak-
ing not correct, since is disregards the rotation in δA direction. The term
would then change to 1

2
IT(α̇2 + (β̇ + δ̇A)2). However since IA � IT this

addition is disregarded.
For the potential energy EP of the system, one considers the terms

1. the potential energy of mBA

2. the potential energy of the belt between motor and carousel arm, that
is modeled like a rotational spring with spring constant kBE

The expresion for the potential energy is

EP = mBA · g · lT sin(α)

+
1

2
kBE(δM − δA)2

The non-conservative generalized forces F ?
i of the system are

1. the air friction of the ball with direction opposite to ṗBA

2. the dampening of the belt in both δA and δM direction (although with
di�erent signs)

3. the friction of the line angle sensor in both α and β direction

4. the friction of the carousel shaft's rotation µSH in δA direction

5. the motor torque τM in δM direction

9



The expression for the generalized forces is

F ? =


F ?
δM

F ?
δA

F ?
α

F ?
β

 =


RG · τM + τBE

−τBE + τSH

τLA,α

τLA,β

+ F ?
AIR

with the gear ratio of the motor RG and

τBE = −cBE · (δ̇M − δ̇A)

τSH = −µSH · 1
τLA,α = µLA,α · α̇
τLA,β = µLA,β · β̇

F ?
AIR =

[
dpBA

dq

]
︸ ︷︷ ︸

J

T

· FAIR = JT (−1

2
ρAIRABAcWṗBA||ṗBA||2)

(1)

F ?
AIR is derived by multiplying FAIR with the transposed Jacobian J and thus

transforming FAIR into the generalized coordinates (see Eq. (1)). This can
be derived with

x = f(q)

δx =
df(q)

dq︸ ︷︷ ︸
J

δq

δxTF = δqTF ?

δqTJTF = δqTF ?

JTF = F ?

To control the system one introduces δ̇M,SP which is the setpoint for the motor
speed that is given to the internal P controller of the drives with a constant
kP. The generalized motor torque is then

τM = −kP(δ̇M − δ̇M,SP) (2)

At �rst, the control u for the system is the setpoint δ̇M,SP. This is easy to
implement in the experimental setup and can be used to compare simulation
results and experimental data with the script step_response_experiment.
These comparisons are used to verify the model and choose the constants by
�tting the simulation to experimental data. The result of this �tting process
can be seen in Fig. 7. The plots are done by replicating a step response
experiment where δ̇M,SP changes from 1.54 rad s−1 to 1.67 rad s−1. One can

10



Figure 7: Step response of elevation, azimuth and arm speed for δ̇M,SP changing from
1.54 rad s−1 to 1.67 rad s−1 and back to 1.54 rad s−1. Experimental data is compared to
simulation data to verify the model.

see that the model is a good approximation of the real carousel setup. Thus
it will be used for further simulation and experiments.

The constants that are used in the model can be looked up in Table 1.
Most of the constants that could not be physically measured have been
roughly estimated and then �ne-tuned by �tting the model to the experi-
mental data by hand. The choice of setting µSH to zero might be counter
intuitive but can be explained as follows: in the real setup, the drives' inter-
nal PI controller takes care of the constant friction of the carousel shaft by
supplying enough additional torque. Since the PI controller is modeled as a
simple P controller, this is not possible in the simulation. However assum-
ing that the friction will always be compensated by the integral term of the
internal PI controller, one can just leave out both to simplify the model.

With the help of the MATLAB function lagrange_formalism one can derive
the explicit equations of motion in the form of

ẋ = f(x, u)

11



Constant Physical Meaning Value
mBA mass of the ball 0.57 kg
lT length of the tether/carbon �ber stick 1.82 m
rA radius of the carousel arm 2 m
ABA e�ective area of the ball regarding air friction 36× 10−4 m2

ρAIR density of the air 1.184 kg m−3

cW air friction constant for a sphere 0.5
g gravitational constant 9.81 m s−2

µLA,β friction constant of the line angle sensor in β direction 30 N m rad−1

µLA,α friction constant of the line angle sensor in α direction 1 N m rad−1

µSH friction constant of the carousel shaft in δA direction 0 N m rad−1

kBE spring constant of the motor belt 11 419 N m rad−1

cBE dampening constant of the motor belt 0.1 N m rad−2

IA moment of inertia of the carousel arm 200 kg m2

IM moment of inertia of the motor 6.7838× 10−4 kg m2

IT moment of inertia of the tether/carbon �ber stick 1.5561 kg m2

kP proportional gain of the internal P controller of the drives 400
RG gear ratio of the motor 22.29

Table 1: All constants used in the model.

for

x(t) =



δM

δA

α
β

δ̇M

δ̇A

α̇

β̇


To do so, lagrange_formalism formulates the Lagrange equation

L = EK − EP

and then solves the Euler-Lagrange equation for each generalized coordinate
qi

d

dt

∂L

∂q̇i
− ∂L

∂qi
= F ?

i
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The resulting system of implicit di�erential equations is then solved for the
explicit q̈. The equations of motion are then

ẋ = f(x, u) =

[
q̇
q̈

]
The full expression of f(x, u) is too long to be usefully presented on paper,
but can easily be generated with the lagrange_formalism script.

2.3 Linearization and Discretization of the Model

For further analysis of the model, we need to linearize it. In order to be
able to change from continuous to discrete time later on, the linearization is
done twice: once in discrete time and once in continuous time. While the
continuous form is used for mathematical analysis of system, the discrete
form is used for the MATLAB implementation and simulation. The xSS, uSS,
where the di�erence equation is linearized, are computed numerically with
solve_steady_state_lsq that solves the least squares problem2

min
x,u
||g(x, u)||22

with g(x, u) = f(x, u)−


δ̇M,SS

δ̇A,SS

0
...
0


(3)

for a given αSS. It is assumed that for all steady states δ̇A,SS = δ̇M,SS. By
looking at equation (3) one can see that not all components of f(x, u) are
set to zero. This is due to the fact that the interesting steady states are the
ones where the carousel is moving but the ball is standing still in reference
to the rotating coordinate system of the carousel. Due to the way that
the motor toque τM is de�ned (see Eq. (2)), in every steady state there
has to be a di�erence between δ̇M and δ̇M,SP to supply a constant torque
that is equal to the negative torque of friction and air restistance. Setting
u = δ̇M,SP means that to control x to a speci�ed xSS a constant feedforward
term uFF = uSS 6= δ̇M is needed. For more advanced closed loop control with
a Linear Quadratic Regulator it is more convenient to work with a setup
that ensures uSS = 0. To achieve this, the old control δ̇M,SP is added as a

2The problem is rewritten as a least squares problem because they are easy to implement
in MATLAB.
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new state while the new control is now δ̈M,SP. This arti�cially complicates
the system by adding another state but it does not change the controllability
of the system. The uFF 6= 0 of the old setup now becomes the new state's
steady state δ̇M,SP,SS.
In discrete time the linearization is

xk = xSS + δxk, uk = uSS + δuk and yk = ySS + δyk (4)

with
δxk+1 = Aδxk +Bδuk

δyk = Cδxk +Dδuk

where

A =
∂xk+1

∂xk
(xSS, uSS), B =

∂xk+1

∂uk
(xSS, uSS),

C =
∂fSENS

∂xk
(xSS, uSS), D =

∂fSENS

∂uk
(xSS, uSS) = 0

The Jacobians A, B and C are computed numerically by the MATLAB function
disc_syscreator that in turn uses �nite di�erences with fingrad. Since
the system that is being linearized is continuous, disc_syscreator numeri-
cally integrates f(x, u) with initial condition [x0, u0] = [xSS, uSS] over a small
timestep TS to get xk+1.

In continous time, the linearization is more straightforward [16, p. 26].
For the same system it is

x(t) = xSS + δx(t), u(t) = uSS + δu(t) and y(t) = ySS + δy(t)

with
δf(x(t), u(t)) = δẋ(t) = Aδx(t) +Bδu(t)

δy(t) = Cδx(t) +Dδu(t)

where

A =
∂f(x, u)

∂x
(xSS, uSS), B =

∂f(x, u)

∂u
(xSS, uSS),

C =
∂fSENS

∂x
(xSS, uSS), D =

∂fSENS

∂u
(xSS, uSS) = 0

This time, the Jacobians A, B and C are computed with the MATLAB function
cont_syscreator that is based on the same function for �nite di�erences
fingrad.

The system of ODEs that has been derived with in Section 2.2 is in
continous time. All further simulations in this thesis however are in discrete
time. The discretization of the system is done by calculating xk+1 = f(xk, uk)
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by numerical integration with the MATLAB function ode15s.

2.4 Open Loop Dynamics of the Carousel

For analyzing the general open loop behavior of the system, the continuous
time linearization is used as described in Section 2.3. The eigenvalues of the
system can be computed with the MATLAB function eig(A). In total there
are eight eigenvalues. Four of them are complex eigenvalues λ3,4,5,6 with real
parts smaller than zero, three real eigenvalues λ1,2,8 smaller than zero and
one real eigenvalue λ7 equal to zero. The eigenvalues are shown in Table 2
and Fig. 8.

Figure 8: Eigenvalues of the open loop system plotted on the
complex plane.

λi Reλi Imλi
λ1 −1.31× 107 0
λ2 −1.32× 101 0
λ3 −6.53× 10−1 7.44
λ4 −6.53× 10−1 - 7.44
λ5 −1.88× 10−1 1.69
λ6 −1.88× 10−1 -1.69
λ7 0 0
λ8 −1.04× 10−1 0

Table 2: Eigenvalues of the open loop sys-
tem.

Of particular interest are eigenvalues λ1 and λ7 since one is very large and
the other one zero. To facilitate further analysis, one looks at the solution of
the homogeneous system

δẋ(t) = Aδx(t) = A(x(t)− xSS(t))

that can be written as a linear combination of terms of eλit (see Eq. (5)) [10,
p. 147f].

δx(t) = eAtδx0 = eMΛM−1t = MeΛtM−1δx0

= c1e
λ1tδx̃0,1 + c2e

λ2tδx̃0,2 + . . .+ c7e
λ7tδx̃0,7 + c8e

λ8tδx̃0,8

=
8∑
i=1

cie
λitδx̃0,i

(5)

where x̃0,i = h(x0) and the constants ci are dependent on the system's eigen-
vectors.
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It is important to see the steady state behavior of the system, which
is equivalent to the homogeneous system in the limit that t → ∞. With
the aforementioned properties of the eigenvalues (especially λ7 = 0) one can
compute

lim
t→∞

8∑
i=1

cie
λitδx̃0,i = c7δx̃0,7 (6)

Eq. (6) shows that the system is converging to a constant c7δx̃0,7 for t→∞.
This can be interpreted as follows: if one exerts a little force onto the lin-
earized system, it starts oscillating and turning in δM and δA. As time pro-
gresses, the oscillation subsides (since the complex eigenvalues have negative
real parts) and the turning motion in δM and δA stops because the system
is losing energy due to friction. This way, δM and δA converge to a constant
value while the rest of the states δx settle to zero again. This interpreta-
tion is encouraged by the fact that the eigenvector corresponding to λ7 is
v7 ≈ [0.7, 0.7, 0, 0, 0, 0, 0, 0]T . The system behavior it describes is thusly a
motion in δM and δA.

The second eigenvalue of interest is λ1. Compared to the other eigenval-
ues it is several magnitudes larger. This means that one state of the system
decays very fast, namely δ̇M since it is controlled by the internal P controller
of the drives to follow δ̇M,SP = uSS. As the kP of this P controller is fairly
large, the corresponding eigenvalue is also large. Again the eigenvector cor-
responding to λ1 supports this claim. Since v1 ≈ [0, 0, 0, 0,−1, 0, 0, 0]T , δ̇M is
indeed the fast decaying state.

In order to later judge the e�ciency of the closed loop controls one has
to examine the open loop step response of the non-linear system. For this
the setup with u = δ̇M,SP is used. The following criteria are used to quantify
the performance of the control setup:

1. overshoot

H
R/F
% = 100 ·

αMAX/MIN − αREF

∆αREF

%

2. rise/fall time

TR = t(α90%)− t(α10%)

TF = t(α10%)− t(α90%)

with α90% = 0.9 · αREF and α10% = 0.1 · αREF

3. settling time in reference to the time of the step tSTEP

α(t− tSTEP > T εSET) ∈ [(1− ε)αREF, (1 + ε)αREF] with ε = 0.01
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Figure 9: Overview of the state behavior for an open loop step response with α changing
from −50° to −55° and back to −50°.

Evaluation Criteria Value
HS

% 75.6 %
HF

% 75.6 %
TR 0.5 s
TF 0.6 s
T εSET 11.7 s

Table 3: Evaluation criteria for open loop feedforward control setup.

Fig. 9 shows an overview of the simulated open loop dynamics of the sys-
tem for a step in αREF from −50° to −55° and then back again to −50°.
Fig. 10 is a more detailed version of the elevation step response since this
is the most important response for judging the performance of the control
setup. In this and all further simulations in this thesis the propagation of
the system behavior is done with the non-linear system equations with the
script carousel_dynamics.

The criteria mentioned above are summarized in Table 3. The shown
values act as a baseline for evaluating all further control setups that should
perform at least as good as the open loop response.

It is now established how the model of the carousel is derived using the
Lagrange formalism and how it is subsequently linearized. It was further
investigated how the open loop system behaves with δ̇M as control u. A
closer look at the eigenvalues and eigenvectors of the linearized system has
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Figure 10: Elevation step response of the open loop system with α changing from −50°
to −55° and back to −50°.

explained the most important aspects of the carousel's dynamics.
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3 Closing the Loop

Up until now the open loop behavior of the system has been investigated. As
a next step, one needs to improve the behavior of the system by decreasing
the overshoot and settling time of the open loop system (see Table 3). To
do so, it is necessary to implement a feedback controller and thus close the
loop. A Discrete Linear Quadratic Regulator (DLQR) is chosen for that
task. After comparing the DLQR's performance to a PID controller, it is
complemented with a Kalman �lter for state estimation.

3.1 Discrete Linear Quadratic Regulator

To implement a DLQR, we must look for a feedback matrix K with

ūk = −Kx̄k, k = 0, 1, 2, . . . , N (7)

In order to control xk to a desired reference value xREF,k, one sets x̄k =
xk − xREF,k. A feedforward term is implemented with ūk = uk − uFF,k.
δ̈M,SP is used as control. With this setup, uFF is equal to zero and thus
ūk = uk. The controller ūk and with it the feedback are linearly proportional
to the di�erence of the state vector xk and the desired state xREF,k. The
feedback law ūk(xk) is an a�ne map. All reference values are steady states
and are calculated using the solve_steady_state_lsq function described
in Section 2.3. Since δM and δA do not have a steady state that could be
used as a reference, they are updated in each iteration using the di�erence
equations

δM,REF,k+1 = δM,REF,k + δ̇M,k · TS

δA,REF,k+1 = δA,REF,k + δ̇A,k · TS

It is necessary to chose the feedback matrix K for Eq. (7). To do so, one
can choose the approach of a DLQR that states that the feedback matrix K
should minimize the cost function

J =
∞∑
k=0

(x̄TkQx̄k + ūTkRūk + 2x̄TkNūk)

for a system
x̄k+1 = Ax̄k +Būk (8)

With the aforementioned forms for x̄ and ū Eq. (8) becomes

xk+1 − xREF,k+1 = A(xk − xREF,k) +B(xk − xREF,k)

19



This procedure can be concisely rephrased as the optimization problem

min
ū

∞∑
k=0

(x̄TkQx̄k + ūTkRūk + 2x̄TkNūk)

s.t. x̄k+1 − Ax̄k +Būk = 0

x̄0 − x?0 = 0

with x̄k = xk − xREF,k

ūk = uk − uREF,k

(9)

The minimization problem presented in Eq. (9) is a linear quadratic problem
of the form

min
x,u

N−1∑
k=0

[
xk
uk

]T [
Qk NT

k

Nk Rk

] [
xk
uk

]
+ xTNPNxN

s.t. xk+1 − Akxk +Bkuk = 0

x0 − x?0 = 0

This kind of optimization problem is solved by �rst calculating the Di�erence
Riccati Equation (see Eq. (10)) and then solving for the optimal uk(xk) by
forward simulation with Eq. (11).

Pk = Qk+A
T
kPk+1Ak−(NT

k +ATkPk+1Bk)(Rk+B
T
k Pk+1Bk)

−1(Nk+B
T
k Pk+1Ak)

(10)

uk(xk) = −(Rk +BT
k Pk+1Bk)

−1(Nk +BT
k Pk+1Ak)xk (11)

This solution can be simpli�ed by setting N → ∞ and assuming that Pk
converges to a P∞. One can then set Pk = Pk+1 = P∞ and transform Eq. (10)
to the Discrete Algebraic Ricatti Equation (see Eq. (12)). All indices k of
the matrices are dropped and replaced by ∞.3 The optimal uk(xk) is then
obtained with Eq. (13), which is already in the form of a feedback rule like
Eq. (7). [2, p. 52�55]

P = Q+ ATPA− (NT + ATPB)(R +BTPB)−1(N +BTPA) (12)

3For enhanced readability, the ∞ is omitted in Eq. (12), thus P∞ = P and so on.
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uk(xk) = − (R +BTPB)−1(N +BTPA)︸ ︷︷ ︸
=K

xk (13)

It should be noted that the optimal uk(xk) is only a function of xk and is
independent of the initial value x0. Also the feedback matrix K is constant
for all times k. The DLQR can be implemented in MATLAB using the function
DLQR(A,B,Q,R,N), which solves the Discrete Algebraic Ricatti Equation and
returns the optimal feedback matrix K.

By comparing the optimization problem in Eq. (9) to Eq. (4) one can
see that it corresponds to a linearization at xREF,k, uREF,k. Thus for the
feedback matrix K to be optimal, all xREF,k, uREF,k need to be close to the
point of linearization. For the point of linearization the xSS corresponding
to

αSS,0+αSS,1

2
is chosen, with a step in α from αSS,0 to αSS,1. When nx is

the dimension of the state vector and nu is the dimension of the controls,
Q ∈ Rnx×nx , R ∈ Rnu×nu and N ∈ Rnx×nu .
For choosing Q, R, and N , we have to keep the following criteria in mind:

1. ūk should be reasonably small for all k

2. x̄k,3 is of particular interest since it corresponds to the systems oscilla-
tion of α around the desired reference value

3. time is of interest. The faster x̄k converges to zero the better

4. Q and R have to be positive de�nite. N can be zero [12]

5. the system has to be stabilizable [12]

In addition to Q, R, and N , one has to supply DLQR with the matrices A and
B of the linearized system. The matrices for the regulator are

Q =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 82 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 52 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


, R = [22], N =



0
0
0
0
0
0
0
0
0


In Q one can see a strong penalty for α deviating from its reference. Also
deviations of α̇ are penalized, although less. N is zero because cross terms of
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Figure 11: Overview of the system behavior for a step response with DLQR and α
changing from −50° to −55° and back to −50°. The fact that α̇ is not penalized results in
an overshoot.

the form 2x̄kNūk are not needed in the cost function. By choosing δ̈M,SP as
the control u, one can directly penalize the change of δ̇M,SP and thus ensure
that the applied motor torque stays below the torque limit. Choosing the
matrices in this way results in a feedback matrix

K =[5.9810,−5.9809,−1.2141,−1.0758× 10−1, 4.5442× 10−7,

4.9958× 10−2, 2.0995, 1.2904× 10−1, 3.5599]

In Fig. 11 one can see the simulation results for a DLQR without the afore-
mentioned penalty for deviation of α̇. Introducing the penalty for α̇ reduces
the overshoot (see Fig. 12) because the change of α is slower and less abrupt.
This combination of penalties for α and α̇ produces the best results for the
controller setup. Fig. 13 shows a more detailed plot comparing the elevation
step response of the DLQR and open loop.

To compare the step response with DLQR to the open loop response, the
same evaluation criteria as in Section 2.4 are applied (see Table 4). Compared
to the open loop control (see Table 3) both HS

% and HF
% have decreased. The

overshoot HS
% has decreased by approximately 99.9 % while HF

% has become
so small that it appears to be 0 % with the current simulation timestep
TS = 0.1 s. The settling time T εSET has decreased by 85 %. The rise time
TR and the fall time TF on the other hand have increased by approximately
80 %. Looking at Fig. 13 one can see that despite the increased TR and TF,
the step response for the DLQR controller looks much better than the open
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Figure 12: Overview of the system behavior for a step response with DLQR and α
changing from −50° to −55° and back to −50°. Penalization of α̇ makes the overshoot
disappear.

Figure 13: Elevation step response with DLQR and α changing from −50° to −55° and
back to −50°. Penalization of α̇ makes the overshoot disappear. The open loop step
response is shown for comparison.
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Evaluation Criteria CL Value OL Value
HS

% 0.02 % 75.6 %
HF

% ≈ 0 % 75.6 %
TR 0.9 s 0.5 s
TF 0.9 s 0.6 s
T εSET 1.7 s 11.7 s

Table 4: Evaluation criteria for closed loop DLQR setup. The open loop values are shown
in comparison.

loop response. Comparing the motor torque for the two setups (see Fig. 9
and Fig. 12) it becomes apparent that while the open loop controller exceeds
the torque limit, the DLQR stays well below the limit. In summary the
DLQR exerts less torque on the carousel but still gets better results.

3.2 DLQR versus PID controller

The DLQR is a fairly complex form a of controller, especially since it requires
an estimator (in this case a Kalman �lter). Is the performance of the DLQR
worth the e�ort4 or can similar or even better results be achieved by a much
simpler controller? This can be checked by comparing the DLQR to a discrete
PID controller � a much less complex setup that requires no estimator. The
PID controller is implemented with

uk = −kPᾱk − kI · TS ·
n∑
k=1

ᾱk − kD
ᾱk − ᾱk−1

TS

with ᾱk = αk − αREF,k

The values for kP, kI and kD are derived using the Ziegler-Nichols method.
For this method, a simple P controller is implemented and its gain increased
until the system becomes unstable. The gains are then derived using Eq. (14)
with the help of the values of the critical P gain kCR and the period TCR

[10, p. 443]. Fig. 14 shows the system with kCR = 0.42, oscillating with
TCR = 3.9 s. Using the corresponding gains results in the simulation shown
in Fig. 15. This is used as a baseline for �ne-tuning the gains by hand to
improve the PID (see Fig. 16). The gains � both before and after �ne-tuning
� are shown in Table 5.

4The DLQR is harder to implement and has more degrees of freedom for tuning than
e.g. a PID controller. For this reason it is also harder to debug. Most importantly however,
a DLQR needs a good model of the system to work properly.
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Constant Ziegler-Nichols Value Fine-Tuned Value
kP 0.252 0.3
kI 0.129 0.001
kD 0.118 0.08

Table 5: Constants used to tune the PID controller.

Figure 14: Overview of the system behavior for a step response with a P controller and
critical gain. The system oscillates with period TCR.

kP = 0.6 · kCR

kI = 1.2 · kCR

TCR

kD = 0.072 · kCRTCR

(14)

Fig. 17 shows a comparison of the elevation step response for the PID and
DLQR setup. The corresponding values for the evaluation criteria are pre-
sented in Table 6. When comparing the system behavior and evaluation
criteria it becomes apparent that the DLQR's performance surpasses that of
the PID controller. The rise time TR increased by 800 % compared to the
DLQR, TF by 822 %. The settling time T εSETTLE increased by 612 %. The
question posed at the beginning of this section can therefore be answered: a
simple PID cannot achieve similar or better performance than the DLQR in
this case.
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Figure 15: Overview of the system behavior for a step response with a PID controller
and α changing from −50° to −55° and back to −50°. The gains of the PID have been
derived with the Ziegler-Nichols method.

Figure 16: Elevation step response with PID controller with α changing from −50° to
−55° and back to −50°. The gains of the PID have been derived with the Ziegler-Nichols
method and then �ne-tuned by hand.
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Figure 17: Comparison of elevation step response of PID and DLQR with α changing
from −50° to −55° and back to −50°.

Evaluation Criteria Value PID Value DLQR
HS

% 5.8 % 0.02 %
HF

% 6.2 % ≈ 0 %
TR 8.1 s 0.9 s
TF 8.3 s 0.9 s
T εSET 12.1 s 1.7 s

Table 6: Evaluation criteria for closed loop PID controller setup. The values for DLQR
are shown in comparison.

3.3 State Estimation with Kalman Filter

The feedback law of Eq. (7) requires that the full state vector xk is known to
the controller. This would in turn necessitate the exact measurement of all
states at all times k. The way the carousel is set up however, only the states
α and β are measured. For further ease of notation, the system output vector
is de�ned in Eq. (15), with yα and yβ as the measured values returned from
the sensors. The sensors are modeled with the sensor function fSENS(xk, uk)
(see Eq. (16)), which is implemented in MATLAB with the function sensor.

yk = [yα,k, yβ,k]
T (15)

fSENS(xk, uk) = Cxk =

[
0 0 1 0 0 · · · 0
0 0 0 1 0 · · · 0

]
· xk (16)
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Instead of trying to measure the system as accurately as possible and then
trusting these measurements to re�ect xk, one can use an estimator, or more
speci�cally, a Kalman �lter. Assume a system

xk+1 = fD(xk, uk) +Gwk, with system noise wk

yk = fSENS(xk, uk) + vk, with sensor noise vk

The system noise wk and sensor noise vk are both white noise with wk ∼
N(0,Σ(wk)) and vk ∼ N(0,Σ(vk)) [11, 14, p. 375]. The general principle of
a Kalman �lter is shown in Algorithm 1.5

Algorithm 1 Working principle of a Kalman �lter.

x0 = x̂0|0
while 1 do

Read in uk
x̂k+1|k = fD(x̂k|k, uk)
ŷk+1|k = fSENS(x̂k+1|k)
Read in yk+1

x̂k+1|k+1 = x̂k+1|k +M(yk+1 − ŷk+1|k)
Output x̂k+1|k+1

k + +
end while

This procedure is shown in Fig. 18. It can be summarized into a more
compact form with the equations

x̂k|k = x̂k|k−1 +M(yk − ŷk|k−1)

x̂k+1|k = fD(x̂k|k, uk)
(17)

Contrary to a standard Kalman �lter the fD(x̂k|k, uk) used to predict xk+1

is not the linearized system equations but the non-linear one. The system
of di�erence equations x̂k+1|k = f(x̂k|k, uk) is integrated with ode15s just
as mentioned in Section 2.3. With the Kalman �lter Eq. (7) changes to
ūk = −K(x̂k|k − xREF,k). The Kalman �lter uses an optimal matrix M ,
which means that it minimizes Σ(x̄k − x̂k|k) [14, p. 377]. To derive M the
MATLAB function DLQE(A,G,C,QE,RE) from the Control System Toolbox is
used. A and C are matrices supplied by the linearization. When nx, ny are
again de�ned as in Section 3.1 and ny is the output dimension, G ∈ Rnx×nx ,
QE ∈ Rnx×nx and RE ∈ Rny×ny . G determines how wk is weighed.

6 QE and

5In this notation xk+1|k is the estimate of xk+1 at timestep k.
6This is redundant but part of the DLQE function. In order to use it, one has to assign
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Figure 18: Working principle of a Kalman �lter.

RE are chosen so that

QE = E{wkwTk } = Σ(wk)

RE = E{vkvTk } = Σ(vk)

Noise can only enter the system via forces respectively δ̇M, δ̇A, α̇ and β̇, thus
QE is chosen to only apply to xk,5, xk,6, xk,7 and xk,8. In order to estimate
the system, the matrices for the estimator are chosen as follows:

1. QE is a sparse matrix with only QE,5,5, QE,6,6, QE,7,7 and QE,88 set to
w2

N where QE,ij is the component of QE in the i'th row and j'th column

2. RE =

[
v2

N 0
0 v2

N

]
3. G is a nx × nx identity matrix.

G is chosen as an identity matrix under the assumption that the system noise
distributes equally over all of xk+1. The choice for RE implies that all sensors

a G. The matrix QE is chosen to describe the system noise.
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are equally noisy. The resulting estimator matrix is

M =



−2.2631× 10−3 2.861× 10−5

−2.2635× 10−3 7.6034× 10−4

3.0853× 10−2 −4.3369× 10−7

−2.4835× 10−3 −6.3411× 10−5

−4.3369× 10−7 1.0829× 10−2

−1.3643× 10−3 8.9856× 10−4

5.0099× 10−3 1.7257× 10−3

−4.8434× 10−4 2.0402× 10−3

0 0


The entries M9,1 and M9,2 are zero because they correspond the the carousel
speed setpoint δ̇M,SP. Since this state is just the integral of u = δ̈M,SP, it is
not a�ected by noise.

For a �rst simulation wN is set to 0.001 and vN to 0.01. To simulate the
noise, the MATLAB function mvnrnd from the Statistics Toolbox is used.
It returns a matrix with random numbers chosen from the zero-mean mul-
tivariate normal distribution [13]. In principle there is a di�erence between
then noise wN and vN assumed when tuning the Kalman �lter and the sim-
ulated noise wSIM and wSIM. For the next two simulations wN = wSIM and
vN = vSIM. The results can be seen in Fig. 19. There is a visible di�erence
between xk and x̂k|k, but the estimator follows the system trajectory closely.
With increased noise, this becomes more di�cult. Fig. 20 shows the simula-
tion results for both wN and vN increased by a factor of 10. The controller
still has a reasonably good performance, but x̂k|k is not able to follow xk as
closely as before. With increasing wN and vN increases also the control uk
and thus the motor torque. Even with the noise increased to a point where
the estimator starts having di�culties following the system trajectory, the
torque does not exceed its limit. For further simulations wN = 0.001 and
vN = 0.01 regardless of how much noise is simulated with wSIM and vSIM.

The loop has now been closed with a Discrete Linear Quadratic Regulator
that supplies an optimal feedback matrix K for the feedback law of Eq. (7)
by solving the optimization problem of Eq. (9). It has been shown that the
DLQR outperforms a PID controller and is therefore a useful control setup.
The optimal feedback of the DLQR is complemented with a Kalman �lter
as an optimal state estimator that minimizes E{x̄k − x̂k|k}. This setup of a
DLQR and Kalman �lter guarantees both a good control behavior and noise
compensation.
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Figure 19: Overview of the system behavior for a step response with DLQR and α
changing from −50° to −55° and back to −50°. A Kalman �lter is implemented with low
system and sensor noise.

Figure 20: Overview of the system behavior for a step response with DLQR and α
changing from −50° to −55° and back to −50°. A Kalman �lter is implemented with high
system and sensor noise.
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4 Mismodeling

Due to the limitations of modeling one can assume that there will always be
a certain mismatch between the behavior of the real carousel and the model.
In order to improve the controller that has been designed so far, it is helpful
to simulate this mismodeling. Until now, there is only one set of ODEs that is
f(x, u) to both estimate the system and simulate it. Now we duplicate f(x, u)
and introduce fMODEL(x, u) and fREAL(x, u). While fMODEL(x, u) is exactly
equal to f(x, u) (but for a di�erent name), fREAL(x, u) has slightly changed
constants. Now fREAL(x, u) is used to simulate the system but linearization,
state estimation and steady state computation is done with fMODEL(x, u).

4.1 E�ects of Simulated Mismodeling

For a �rst simulation, the constants that are most di�cult to measure (or
estimate) in the real setup are changed. More speci�cally this means that the
arm's moment of inertia IA and the belt's spring constant kBE are increased
by 50 % each for fREAL(x, u). To make the signi�cant e�ects more visible,
the system and sensor noise are turned o� for the simulations in Sections 4.1
to 4.2. The result of the simulation can be seen in Fig. 21. The di�erence
between xk and x̂k|k can hardly be seen. Also the overall trajectory of the
elevation step response does not seem to have changed compared to the
simulation without mismodeling (see Fig. 13).

But what happens if constants are changed that a�ect the elevation angle
more directly? One variable that obviously does so is the tether length lT,
that is now increased by 10 % in fREAL(x, u).7 The simulation results are
shown in Fig. 22.

Due to the di�erences in the two models a steady state error occurs.
There is as well a mismatch between xk and x̂k|k as between x̂k|k and xREF,k.
To successfully control the setup one must �rst �x the mismatch between
estimator and system trajectory. The obvious thought would be to treat the
mismatch just like any other system noise and try to decrease it by adding
a component in QE responsible for noise in α. This is however ill-advised
because the Kalman �lter described in Section 3.3 only works for zero-mean
Gaussian noise [14, p. 375].

7The constants IA and kBE are changed back to their initial values.
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Figure 21: Overview of the system behavior for a step response with DLQR and α
changing from −50° to −55° and back to −50°. The constants IA and kBE are increased
by 50% for fREAL(x, u) to show the controller's reaction to mismodeling. System and
sensor noise are turned o�.

Figure 22: Overview of the system behavior for a step response with DLQR and α
changing from −50° to −55° and back to −50°. The constant lT is increased by 10% for
fREAL(x, u) to show the controller's reaction to mismodeling. System and sensor noise are
turned o�.
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4.2 Addition of a Pseudo-Force

A di�erent approach is chosen by introducing a generalized pseudo-force SP

in α direction as a new state seemingly responsible for the e�ects of the
mismodeling. By doing so, f(x, u) changes with

α̈ = · · ·+ SP

ṠP =
−SP

τ
+ wN,S with wN,S ∼ N(0,Σ(SP))

(18)

By setting the component wN,S of QE responsible for SP to 0.1 one ensures
that the estimator will learn the value of SP and correctly adjust x̂k|k to �t

the degree of mismodeling that the value of the pseudo-force represents. ṠP

is set to a �rst-order Gauss-Markov term so that the system remains at least
stabilizable [5, p. 44f]. The time constant τ is set to 100 s since SP should
decline slower than the other time constants of the system. The feedback
and estimator matrices thus change to

K =[5.9810,−5.9809,−1.2141,−1.0758× 10−1 ,4.5442× 10−7 ,

4.9958× 10−2 ,2.0995, 1.2904× 10−1 ,3.5599, 1.5223]

M =



−4.2742× 10−4 1.0309× 10−5

−1.9221× 10−3 7.5257× 10−4

5.7198× 10−1 −1.8954× 10−3

−3.8768× 10−2 3.7148× 10−5

−1.8954× 10−3 1.0842× 10−2

−6.3224× 10−3 9.3547× 10−4

2.3721 −1.1167× 10−2

−1.8835× 10−1 3.0575× 10−3

0 0
6.5144 −3.4605× 10−2


(19)

Repeating the simulation with increased lT produces Fig. 23. The approach
has the desired result: αk now converges to α̂k|k and the steady state error
almost disappears. The kink in α at approximately 1 s stems from the
fact that the estimator needs a �nite time to learn SP before it can adjust.
Also the controller is not able anymore to follow all of the references �
�xing the steady state error in α has resulted in a steady state error in the
other state. This however is not a problem and easily understood: since the
reference values for each state are derived using fMODEL, they do not re�ect
the system's actual steady states. Following any other state than α would
therefore be pointless.
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Figure 23: Overview of the system behavior for a step response with DLQR and α
changing from −50° to −55° and back to −50°. The constant lT is increased by 10% for
fREAL(x, u) to show the controller's reaction to mismodeling. System and sensor noise are
turned o�. A new state SP is added to decrease the steady state error.

4.3 Noise Compensation of the Enhanced DLQR

To ensure that the new control setup with an integral term can still com-
pensate system noise as well as before, wSIM is set to 0.001 and vSIM to 0.01
again (just like in the simulation seen in Fig. 19). The component wSIM,S = 0
because no noise enters the system via the pseudo-force. The results of the
new simulation can be seen in Fig. 24. Compared to the simulation with-
out mismodeling all states oscillate a lot more, especially the arm speed δ̇A.
Besides the motor torque has increased (even tough it still stays below its
limit). This behavior is not desirable. The unwanted oscillation of the sys-
tem is the result of the Kalman �lter making SP responsible for most of the
system noise wN (since the component wN,S of QE responsible for SP is 100
times larger than wN). This results in a badly tuned matrix M with too
big components for SP and α̇ (see Eq. (19)). To solve this problem one sets
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Figure 24: Overview of the system behavior for a step response with DLQR and α
changing from −50° to −55° and back to −50°. The constant lT is increased by 10% for
fREAL(x, u) to show the controller's reaction to mismodeling. System noise wN is set to
0.001 and sensor noise vN to 0.01. A new state SP is added to decrease the mismatch
between xk and x̂k|k.

wN,S = wN, resulting in

M =



−2.0970× 10−3 2.6636× 10−5

−2.1023× 10−3 7.5838× 10−4

6.5531× 10−2 −6.8076× 10−6

−5.2434× 10−3 −6.2946× 10−5

−6.8076× 10−6 1.0829× 10−2

−1.3302× 10−3 8.9858× 10−4

2.2385× 10−2 1.7033× 10−3

−1.9302× 10−3 2.0422× 10−3

0 0
9.3440× 10−2 −3.0876× 10−5


The huge entries of M for α̇ and SP are the same size as the other entries
of the matrix. Repeating the previous simulation with wN,S = wN = 0.001
produces the plot shown in Fig. 25.

Comparing Fig. 24 and Fig. 25 one can see that the change in wN,S had
the desired e�ect. The system's oscillation has decreased and the system
trajectory can follow the reference much better. Also the motor torque has
decreased by a factor of ten.
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Figure 25: Overview of the system behavior for a step response with DLQR and α
changing from −50° to −55° and back to −50°. The constant lT is increased by 10% for
fREAL(x, u) to show the controller's reaction to mismodeling. System noise wN is set to
0.001 and sensor noise vN to 0.01. A new state SP is added to decrease the steady state
error. To decrease oscillation wN,S is set to 0.001.

4.4 Simpli�cation of the Kalman Filter

A special kind of mismodeling is the simpli�cation of the Kalman �lter. In
the previous simulations the Kalman �lter worked as shown in Eq. (17) where
the fD(x, u) to estimate xk+1 is a non-linear system of di�erence equations.
Since the feedback matrix K and estimator matrix M is only optimal for
small steps around the point of linearization xSS, one should be able to use
the linearized system to estimate xk+1 without losing too much accuracy.
In addition to simplifying the port to the carousel, the linearization of the
Kalman �lter also improves the computation time since only a linear system
of di�erential equations has to be integrated intead of a non-linear one. Using
the linearized system equations instead of the non-linear ones is a kind of
mismodeling that can be counteracted in the way that has been discussed in
this section. The equations for the Kalman �lter change to

x̂k|k = x̂k|k−1 +M(yk − ŷk|k−1)

x̂k+1|k = xSS + A(x̂k|k − xSS) +Buk

Repeating the previous step response simulation with an increased tether
length (but this time without any additions to get rid of mismodeling errors
and no noise) produces the plot in Fig. 26. As expected there is again a
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Figure 26: Overview of the system behavior for a step response with DLQR and α
changing from −50° to −55° and back to −50°. A Kalman �lter with linear state estimation
has been implimented. The thether length lT has been increased by 10% to show the e�ects
of mismodeling.

steady state error and a mismatch between xk and x̂k|k.
In order to get rid of the steady state error and the mismatch between

xk and x̂k|k the additional state SP is introduced again into the system equa-
tions f(x, u) before linearization and discretization. The simulation results
for this setup are shown in Fig. 27. The result of this simulation can hardly
be distiguished from the corresponding simulation with non-linear state esti-
mation (see Fig. 23). The assumption that the non-linear state estimation of
the Kalman �lter can be exchanged for a linear one has been supported by
the simulation results. The performance of the linear and the non-linear state
estimation is equally good as long as one stays near the point of linearization.

In order to decrease the steady state error even more, one would have
to add an integral term. The addition of an integral term should be done
cautiously due to issues like wind-up. With the current size of the steady
state error an additional integral term is not necessary, but should be kept
in mind for further improvements of the controller.

The implementation of a pseudo-force SP in the system equations is a suc-
cessful way of decreasing steady state errors. When staying near to the
point of linearization, one can exchange the non-linear state estimation of
the Kalman �lter for a linear one without losing much accuracy. This is a
way of simplifying the Kalman �lter and thus cutting down on computation
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Figure 27: Elevation step response with DLQR and α changing from −50° to −55° and
back to −50°. A Kalman �lter with linear state estimation has been implimented. The
thether length lT has been increased by 10% to show the e�ects of mismodeling. A new
state SP is added to decrease the steady state error.

time while increasing the portability of the setup by reducing its complexity.
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5 Summary and Outlook

This thesis' premise was to discuss the possibility of using linear state space
control to control for the experimental carousel setup of the Highwind project.
The outcome was a Discrete Linear Quadratic Regulator with a Kalman �l-
ter for state estimation that has been thoroughly tested in simulation.

The thesis starts with an investigation of the modeling process of the carousel
in Section 2. Section 2.1 concerns itself with Highwind's experimental carousel
setup. Section 2.2 discusses how the carousel was modeled using the La-
grange formalism. The derivation of the system equations is automated with
the MATLAB script lagrange_formalism. Some of the constants used in the
model have been measured. The rest were roughly estimated and then �tted
to experimental data by hand. The result of this �t can be seen in Fig. 7
which shows a comparison of the experimental data and the model.

Section 2.3 describes the process of �nding the steady states of the model
and then linearizing it at these steady states. In order to �nd steady states,
the function solve_steady_state_lsq is employed. The linearization is
done twice: once in continuous time and once in discrete time. While the
discrete linearization is used for the MATLAB implementation and simulations,
the continuous linearization is used to analyze the system behavior. The
analysis of the carousel's open loop dynamics happens in Section 2.4. By
looking at the system eigenvalues and eigenvectors one can conclude that all
states except δM and δA return to their steady state values after the system
is perturbed, while δM and δA converge to a constant. To establish a baseline
for the performance of the controllers in Section 3, the open loop system is
simulated for a step in α from −50° to −55° and back (see Fig. 9).

After this investigation of the open loop system, the loop is closed in Sec-
tion 3. Section 3.1 describes how this is done using a Discrete Linear Quadratic
Regulator. The DLQR �nds an optimal feedback matrix K for the feedback
law of Eq. (7) by solving the optimization problem of Eq. (9). In MATLAB this
is implemented using the DLQR function. A comparison of the open loop and
DLQR step responses in Fig. 13 shows how good the DLQR's performance is.
To further drive this point home, the DLQR is compared to a PID controller
in Section 3.2. The PID controller is tuned using the Ziegler-Nichols method
with some �ne-tuning by hand. As one can see in Fig. 17, the DLQR outper-
forms the PID. In Section 3.3 a Kalman �lter is added for state estimation
to complement the DLQR. The Kalman �lter uses the optimal matrix M ,
which is chosen in a way that minimizes Σ(x̄k − x̂k|k). To derive M , the
function DLQE is used (analogous to DLQR for matrix K). Fig. 19 and Fig. 20
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show that the estimator can cope with varying degrees of system and sensor
noise.

Both the DLQR and the Kalman �lter rely on an accurate model. The
better the model aligns with the experimental data, the better the controller
will work. Even though it has been shown in Section 2.2 that the model aligns
quite well with the experimental data, one has to consider the possibility of
modeling errors. Section 4 discusses the possible e�ects of mismodeling and
what measures one can take to avoid those e�ects. Section 4.1 shows what
kind of mismodeling can lead to a steady state error in α and presents an
example where the length of the tether is 10 % longer in the real system than
in the model.

Section 4.2 then introduces the idea of adding a pseudo-force SP to the
model that is seemingly responsible for the steady state error. When this
pseudo-force is implemented in the model as a new state in the right way,
the Kalman �lter can estimate the amount of mismodeling. This results in
the correct controls and a decrease of the steady state error.

All simulations of Section 4 up to this point were done without system or
sensor noise. Whether the noise compensation of the Kalman �lter still works
as well as before adding the additional state SP is investigated in Section 4.3.
When wN,S (the component of the tuning matrix QE responsible for SP) is
large, the Kalman �lter is able to learn the state's value very quickly. The
downside however is that if wN,S � wN, the kalman �lter makes the states
SP and α̇ responsible for most of the mismodeling, resulting in a badly tuned
matrix M . By setting wN,S = wN one ensures that the estimator is able to
learn the value of SP and compensates the system and sensor noise.

A special kind of mismodeling is discussed in Section 4.4: the Kalman
�lter that has been used in this thesis works with a system of non-linear
di�erence equations to estimate xk. Since the controller is only optimal near
the point of linearization, one can use the linearized system of di�erence
equations for the state estimation of the Kalman �lter without losing much
accuracy. In addition, the aforementioned pseudo-force SP improves the per-
formance of the linearized state estimation.

Now that the DLQR with Kalman �lter proved to be both successful and
robust in simulation, the next step is to implement it on the actual carousel.
Sadly enough, this was not possible in the time frame of this thesis. However,
it still seems prudent to outline how such an implementation should proceed
and what measures have already been taken.

The MATLAB code of this thesis is ported to C++. The port to the carousel
will proceed iteratively to make the troubleshooting process easier. For a
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�rst implementation, the DLQR and Kalman �lter are set up without the
additional state SP. To decrease the complexity of the port, the Kalman �lter
with linear state estimation is chosen. The �rst experiments should still be
open loop to ensure that the estimator works before closing the loop. As an
additional safety measure one can output the controls of the DLQR without
actually applying them to the motor in order to check if they are reasonable.
After the complementary pair of DLQR and Kalman �lter is set up in the
carousel and produces reasonable controls and estimation, it has to be decided
how to progress further. As established in Section 4 it is to be expected
that there is a steady state error due to di�erent kinds of mismodeling. To
decrease the steady state error it is possible to implement the SP state just
as outlined in Section 4.2 or try an integral term if this approach does not
show the desired results. Analogous to the previous iteration it should �rst
be veri�ed that the estimator works properly before closing the loop with a
changed control setup. Judging by the simulation results it should be possible
to implement a well-functioning controller this way.
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Appendices

A MATLAB Code

A.1 carousel_dynamics.m

1 %This script simulates and plots the system behavior for a ...
repeated step

2 %from alpha0 to alpha1. It is possible to choose between a ...
Discrete Linear

3 %Quadratic Regulator and a PID controller. In order to ...
change the control

4 %for open loop simulations or simulate without the ...
pseudo-force s, one has

5 %to change the matrix dimensions of the steady states and ...
LQG matrices

6 %accordingly.
7

8 %constants
9 k_p = 400; %internal PID of model

10

11 %specify alpha reference values
12 alpha0 = -50*pi/180;
13 alpha1 = -55*pi/180;
14 alphass = (alpha0 + alpha1)/2;
15

16 %compute steady states
17 xopt0 = solve_steady_state_lsq(alpha0);
18 xopt1 = solve_steady_state_lsq(alpha1);
19 xoptss = solve_steady_state_lsq(alphass);
20 xss = [xoptss(1), xoptss(2), alphass, xoptss(3), ...

xoptss(5), xoptss(5), 0, 0,xoptss(6), 0].';
21 xss0 = [xopt0(1), xopt0(2), alpha0, xopt0(3), xopt0(5), ...

xopt0(5), 0, 0,xopt0(6), 0].';
22 xss1 = [xopt1(1), xopt1(2), alpha1, xopt1(3), xopt1(5), ...

xopt1(5), 0, 0,xopt1(6), 0].';
23

24 %check if steady state were computed correctly
25 xdot_zero0 = carousel_lagrange(xss0, 0)
26 xdot_zero1 = carousel_lagrange(xss1, 0)
27

28 %set size of time step ts and number of time steps
29 n=700;
30 ts=0.1;
31
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32 %get system matrices A, B and C by linerization
33 [A,B,C] = disc_syscreator(xss, 0, ts);
34

35 %check controllability and observability
36 rank_ctrb = rank(ctrb(A, B))
37 rank_obsv = rank(obsv(A, C))
38

39 %set PID gains
40 %Kp_pid = 0.3;
41 %Ki_pid = 0.001;
42 %Kd_pid = 0.08;
43

44 %dimension of state vector nx and output vector ny
45 nx = length(xss0);
46 ny = size(C, 1);
47

48 %set matrices Q and R for DLQR
49 penalty_delta_motor = 0;
50 penalty_delta_arm = 0;
51 penalty_alpha = 8;
52 penalty_beta = 0;
53 penalty_ddelta_motor = 0;
54 penalty_ddelta_arm = 0;
55 penalty_dalpha = 5;
56 penalty_dbeta = 0;
57 penalty_ddelta_motor_sp = 0;
58 penalty_s = 0;
59 Q = diag([penalty_delta_motor, penalty_delta_arm, ...

penalty_alpha, penalty_beta, penalty_ddelta_motor, ...
penalty_ddelta_arm, penalty_dalpha, penalty_dbeta, ...
penalty_ddelta_motor_sp, penalty_s].^2);

60 R = (2).^2;
61

62 %set matrices G, QE and RE for DLQE (Kalman filter)
63 w_n = 0.001;
64 G = eye(nx);
65 variance_delta_motor = 0;
66 variance_delta_arm = 0;
67 variance_alpha = 0;
68 variance_beta = 0;
69 variance_ddelta_motor = w_n;
70 variance_ddelta_arm = w_n;
71 variance_dalpha = w_n;
72 variance_dbeta = w_n;
73 variance_ddelta_motor_sp = 0;
74 variance_s = w_n;
75 QE = diag([variance_delta_motor, variance_delta_arm, ...

variance_alpha, variance_beta, variance_ddelta_motor, ...
variance_ddelta_arm, variance_dalpha, variance_dbeta, ...
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variance_ddelta_motor_sp, variance_s].^2);
76 RE = diag([0.01,0.01].^2);
77 QE_sim = diag([variance_delta_motor, variance_delta_arm, ...

0, variance_beta, variance_ddelta_motor, ...
variance_ddelta_arm, variance_dalpha, variance_dbeta, ...
variance_ddelta_motor_sp, 0].^2);

78 RE_sim = diag([0.01,0.01].^2);
79

80 %get matrix K for controls and M for Kalman filter
81 [K, ~, ~] = dlqr(A, B, Q, R);
82 [M, ~, ~, ~] = dlqe(A, G, C, QE, RE);
83

84 %Create matrices X, Xref, Xest, U and T to log simulation ...
results

85 X = zeros(nx, n + 1);
86 Xest = X;
87 U = zeros(1, n);
88 Ysens = zeros(ny, n);
89 T = 0:ts:(n*ts);
90

91 %Create matrices for integral control
92 ERROR = zeros(ny,n);
93 %Ki = [0.08,0];
94

95 %Initialize logging matrices
96 Xest(:,1) = xss0;
97 X(:,1) = xss0;
98 Xref = zeros(nx,n);
99

100 for k = 1:n
101

102 %get simulated sensor
103 Ysens(:, k) = sensor(X(:, k)) + mvnrnd(zeros([2, 1]), ...

RE_sim)';
104

105 %run estimator
106 yest = sensor(Xest(:, k));
107 Xest(:, k) = Xest(:, k) + M*(Ysens(:, k) - yest);
108

109 %reference value changing periodically from xss0 to xss1
110 if mod(T(k),40) < 20
111 xref = xss0;
112 else
113 xref = xss1;
114 end
115

116 %update reference value for delta_motor and delta_arm
117 if k > 2
118 xref(1) = Xest(1, k - 1) + Xest(5, k)*ts;
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119 xref(2) = Xest(2 ,k - 1) + Xest(6, k)*ts;
120

121 end
122

123 %log reference value
124 Xref(:, k) = xref;
125

126 %apply full state feedback controller
127 U(k) = -K*(Xest(:, k)-Xref(:, k));
128

129 %apply PID controller
130 % ERROR(:, k + 1) = ERROR(:, k) + [X(3, k) - xref(3); ...

X(4, k) - xref(4)];
131 % bar_ak = (X(3, k) - Xref(3, k));
132 % if k > 1
133 % bar_akminus1 = X(3, k - 1) - Xref(3, k - 1);
134 % U(k) = -(Kp_pid*(bar_ak) + Ki_pid*ts*ERROR(1, k) ...

+ Kd_pid*(bar_ak - bar_akminus1)/ts);
135 % else
136 % U(k) = -(Kp_pid*bar_ak + Ki_pid*ts*ERROR(1, k));
137 % end
138

139 %simulate system
140 X(:, k + 1) = integrator(X(:,k),U(k),ts) + ...

mvnrnd(zeros(nx, 1), QE_sim)';
141

142 %run estimator
143 Xest(:, k + 1) = integrator(Xest(:, k), U(k), ts); ...

%non-linear
144 %Xest(:, k + 1) = xss + A*(Xest(:, k) - xss) + B*U(k); ...

%linear
145

146 end
147

148 %plots
149 figure(1);
150 clf;
151

152 %plot elevation
153 ax(1) = subplot(3, 2, 1);
154 hold on;
155 plot(T, 180/pi*X(3, :), 'b');
156 plot(T, 180/pi*Xest(3, :), 'g');
157 axis([0 55 -60 -45])
158 xlabel('t [s]')
159 ylabel('Elevation [deg]')
160 plot(T(1:end-1), 180/pi*Xref(3, :), 'r')
161 legend('Simulation Data', 'Estimator', 'Reference Value')
162 grid on;
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163

164 %plot arm speed
165 ax(2) = subplot(3, 2, 2);
166 hold on;
167 plot(T, X(6, :));
168 plot(T(1:end - 1), Xref(6, :), 'r')
169 plot(T, Xest(6, :), 'g');
170 grid on;
171 axis([0 55 1.45 1.65])
172 xlabel('t [s]')
173 ylabel('Arm Speed [rad/s]')
174 legend('Simulation Data', 'Estimator', 'Reference Value')
175

176 %plot motor speed
177 ax(3) = subplot(3, 2, 3);
178 hold on;
179 grid on;
180 axis([0 55 1.45 1.65])
181 plot(T, X(5, :));
182 plot(T(1:end - 1), Xref(5, :), 'r')
183 plot(T, Xest(5, :), 'g');
184 xlabel('t [s]')
185 ylabel('Motor Speed [rad/s]')
186 legend('Simulation Data', 'Estimator', 'Reference Value')
187

188 %plot u
189 ax(4) = subplot(3, 2, 4);
190 hold on;
191 grid on;
192 plot(T(1:end - 1), U);
193 xlabel('t [s]')
194 ylabel('Change of Motor Speed SP [rad/s^2]')
195

196 %plot azimuth
197 ax(5) = subplot(3, 2, 5);
198 hold on;
199 grid on;
200 axis([0 55 -1.5 1.5])
201 plot(T(1:end - 1), Xref(4, :)*180/pi, 'r')
202 plot(T, X(4, :)*180/pi, 'b')
203 plot(T, 180/pi*Xest(4, :), 'g')
204 xlabel('t [s]')
205 ylabel('Azimuth [deg]')
206 legend('Simulation Data', 'Estimator', 'Reference Value')
207

208 %plot motor torque
209 ax(6) = subplot(3, 2, 6);
210 hold on;
211 grid on;
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212 plot(T, -k_p*(X(5, :) - X(9, :)), 'b')
213 axis([0 55 -20 20])
214 xlabel('t [s]')
215 ylabel('Motor Torque [Nm]')
216

217 linkaxes(ax, 'x')

A.2 carousel_dynamics_SE.m

1 function [T,X,U] = carousel_dynamics_SE(carouselspeed_sp, ...
timestamp)

2

3 %This function takes the experimental data for the ...
ddelta_motor setpoint as

4 %controls and simulates the system.
5

6 %set time step and number of steps
7 ts = 0.1;
8 n = 1000;
9

10 %set initial conditions
11 ddelta0 = 1.44;
12 xss0 = [0, 0, -57*pi/180, 0, ddelta0, ddelta0, 0, 0]';
13

14 %initialize matrices
15 nx = length(xss0);
16 X = zeros(nx, n + 1);
17 X(:, 1) = xss0;
18 T = 0:ts:(n*ts);
19

20 %resample data
21 carouselspeedsetpointresamp = ...

interp1(timestamp,carouselspeed_sp,T,'spline');
22

23 %set U
24 U = carouselspeedsetpointresamp(200:end - 1);
25

26 for k = 1:(n - 200)
27 x = X(:, k);
28 u = U(k);
29 x = integrator(x, u, ts);
30 X(:, k + 1) = x;
31 end
32

33 end

52



A.3 carousel_lagrange.m

1 function [xdot] = carousel_lagrange(x, u)
2

3 %This function contains the non-linear system equations. ...
In order to change the control

4 %for open loop simulations or simulate without the ...
pseudo-force s or implement mismodeling one has

5 %to change xdot or the constants accordingly.
6

7 %state vector
8 delta_motor = x(1);
9 delta_arm = x(2);

10 alpha = x(3);
11 beta = x(4);
12 ddelta_motor = x(5);
13 ddelta_arm = x(6);
14 dalpha = x(7);
15 dbeta = x(8);
16 ddelta_motor_sp = x(9);
17 s = x(10);
18

19 %control
20 dddelta_motor_sp = u;
21

22 %constants
23 m_ball = 0.57;
24 l_tether = 1.82;
25 I_arm = 200;
26 I_motor = 0.015121/(14.86*(3/2));
27 I_tether = 4.5*1/3*m_ball*l_tether;
28 r_arm = 2.05;
29 k_beltspring = 11419;
30 c_beltdampening = 0.1;
31 my_shaft = 0;
32 g = 9.81;
33 c_w = 0.5;
34 roh_air = 1.184;
35 A_ball = 36*10^(-4);
36 my_alpha_LA = 1;
37 my_beta_LA = 30;
38 k_p = 400;
39 tau = 100;
40

41 %Since the expression for ddq derived by ...
lagrange_formalism.m is too big
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42 %to be usefully presented on paper, ddq = [dddelta_motor; ...
dddelta_arm;

43 %ddalpha; ddbeta] in the following expression for xdot.
44

45 %system equations
46 xdot = [
47 ddelta_motor;
48 ddelta_arm;
49 dalpha;
50 dbeta;
51 dddelta_motor;
52 dddelta_arm;
53 s + ddalpha;
54 ddbeta;
55 ddelta_motor_sp;
56 -s/tau];
57

58 end

A.4 cont_syscreator.m

1 function [A, B, C] = cont_syscreator(x0, u0)
2

3 %This function returns the matrices A, B and C of a ...
continous linearization

4 %of carousel_lagrange at x0, u0.
5

6 A = fingrad(@(x)carousel_lagrange(x,u0), x0, 1e-6);
7 B = fingrad(@(u)carousel_lagrange(x0,u), u0, 1e-6);
8 C = fingrad(@sensor, x0, 1e-6);
9 Contr = ctrb(A ,B);

10

11 if rank(Contr) < rank(A)
12 disp('Syscreator: System not controllable.')
13 end
14

15 end
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A.5 disc_syscreator.m

1 function [A, B, C] = disc_syscreator(x0, u0, ts)
2

3 %This function returns the matrices A, B and C of a ...
discrete linearization

4 %of carousel_lagrange at x0, u0.
5

6 A = fingrad(@(x)integrator(x,u0,ts), x0, 1e-6);
7 B = fingrad(@(u)integrator(x0,u,ts), u0, 1e-6);
8 C = fingrad(@sensor, x0, 1e-6);
9 Contr = ctrb(A, B);

10

11 if rank(Contr) < rank(A)
12 disp('Syscreator: System not controllable.')
13 end
14

15 end

A.6 fingrad.m

1 function [JF] = fingrad(F, x0, h)
2

3 %Numerical calculation of the Jacobian of function F(x), ...
evaluated at x0 with accuracy h

4

5 F0 = F(x0);
6 [nrow,ncol] = size(F0);
7 assert(ncol == 1, 'need a column vector')
8 JF = zeros(nrow, length(x0));
9 e = eye(length(x0));

10

11 for j = 1:length(x0)
12 JF(:, j) = (F(x0 + h*e(:, j)) - F0)/h;
13 end
14

15 end
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A.7 integrator.m

1 function xnext = integrator(x0, u0, dt)
2

3 %This function integrates carousel_lagrange numerically ...
with initial value

4 %x0, u0 over time dt.
5

6 options = odeset('RelTol', 5e-14);
7 [~, Y] = ode15s(@(t, x)carousel_lagrange(x, u0), [0, dt], ...

x0, options);
8 xnext = Y(end, :)';
9

10 end

A.8 lagrange_formalism.m

1 %This script derives xdot2 = [dddelta_motor, dddelta_arm, ...
ddalpha, ddbeta]'

2 %for the carousel model using the Lagrange formalism.
3

4 %ground frame: NED centered at the carousel axis at arm level
5

6 syms M_motor %torque of motor [Nm]
7 syms p_ball real %position of the ball in ground frame, [m]
8 syms r_arm real %length of arm [m]
9 syms l_tether real %length of tether [m]

10 syms m_ball real %mass of the ball [kg]
11 syms I_arm real %moment of inertia of carousel [kg m^2]
12 syms I_motor real %moment of inertia of motor [kg m^2]
13 syms I_tether real %moment of intertia of the tether [kg m^2]
14 syms p_sensor real %position of line angle sensor in ...

ground frame [m]
15 syms delta_arm ddelta_arm dddelta_arm real %angle of arm ...

rotating around carousel axis with 0 aligned with ...
east, positive for counter-clockwise rotation [rad]

16 syms delta_motor ddelta_motor dddelta_motor real %angle of ...
motor rotating around carousel axis with 0 aligned ...
with east, positive for counter-clockwise rotation [rad]

17 syms alpha dalpha ddalpha real %elevation angle of rope, ...
positive above horizontal [rad]

18 syms beta dbeta ddbeta real %azimuth angle of rope, ...
positive if ball is ahead of the arm [rad]

19 syms k_beltspring real %spring constant of the belt [Nm/rad]
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20 syms c_beltdampening real %dampening coefficient of the ...
belt [Nm/rad^2]

21 syms my_shaft real %friction constant of motor shaft [Nm/rad]
22 syms my_beta_LA real %friction constant of LA-sensor in ...

beta direction [Nm/rad]
23 syms my_alpha_LA real %friction constant of LA-sensor in ...

alpha direction [Nm/rad]
24 syms g real %gravitational constant
25 syms roh_air real %density of the air
26 syms A_ball real %area of the ball
27 syms c_w %air friction constant
28 syms k_p %proportional constant of the motor control [-]
29 syms ddelta_motor_sp %setpoint for the motor controller ...

[rad/s]
30

31 %defining generalized coordinates
32 q = [delta_motor; delta_arm; alpha; beta];
33 dq = [ddelta_motor; ddelta_arm; dalpha; dbeta];
34 ddq = [dddelta_motor; dddelta_arm; ddalpha; ddbeta];
35

36 %defining geometric subexpressions
37 p_sensor = r_arm*[sin(delta_arm);cos(delta_arm);0];
38 p_ball = p_sensor + l_tether*[cos(alpha)*sin(delta_arm + ...

beta); cos(alpha)*cos(delta_arm + beta); -sin(alpha)];
39

40 %velocity of the ball
41 v_ball = jacobian(p_ball, q)*dq;
42

43 %kinetic energy
44 KE = 0;
45 KE = KE + 1/2*m_ball*(v_ball.'*v_ball);
46 KE = KE + 1/2*I_arm*ddelta_arm^2;
47 KE = KE + 1/2*I_motor*ddelta_motor^2;
48 KE = KE + 1/2*I_tether*(dalpha^2+dbeta^2);
49

50 %potential energy
51 PE = m_ball*g*(l_tether*sin(alpha));
52 PE = PE + 1/2*k_beltspring*(delta_motor-delta_arm)^2;
53

54 %lagrangian
55 L = KE - PE;
56

57 %define motor control
58 M_motor = -k_p*(ddelta_motor - ddelta_motor_sp);
59

60 %generalized forces
61 J = jacobian(p_ball,q);
62 f_airfriction = -1/2*roh_air*A_ball*c_w*v_ball*norm(v_ball);
63 M_beltfriction = -c_beltdampening*(ddelta_motor - ddelta_arm);
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64 M_shaftfriction = -my_shaft;
65 gen_airfriction = J.'*f_airfriction;
66 M_LA_friction_alpha = -my_alpha_LA*dalpha;
67 M_LA_friction_beta = -my_beta_LA*dbeta;
68 gen_forces = [14.86*(3/2)*M_motor+M_beltfriction; ...

-M_beltfriction + M_shaftfriction; ...
M_LA_friction_alpha; M_LA_friction_beta] + ...
gen_airfriction;

69

70 %implicit ODE
71 Lq = jacobian(L, q).';
72 Ldq = jacobian(L, dq);
73 Ldqt = jacobian(Ldq, q)*dq + jacobian(Ldq, dq)*ddq;
74 impl_ode = Ldqt - Lq - gen_forces;
75

76 %explicit ODE
77 sol = solve(impl_ode(1), impl_ode(2), impl_ode(3), ...

impl_ode(4), dddelta_motor, dddelta_arm, ddalpha, ddbeta);
78 xdot2 = simplify(expand([sol.dddelta_motor; ...

sol.dddelta_arm; sol.ddalpha; sol.ddbeta]));

A.9 sensor.m

1 function [y] = sensor(x)
2

3 %This is the sensor function.
4

5 y = [x(3), x(4)]';
6

7 end

A.10 solve_steady_state_lsq.m

1 function xopt = solve_steady_state_lsq(alpha_ref)
2

3 %This function solves for steady states by solving a least ...
squares problem.

4

5 options = optimoptions('lsqnonlin', 'TolFun', ...
1e-25,'TolX', 1e-25);

6 xopt = lsqnonlin(@(x)g(x, alpha_ref), [0, 0, -0.5*pi/180, ...
1.6, 1.6, 1.6], [], [], options);

7
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8 end
9

10 function ret = g(dv, alpha_ref)
11

12 delta_motor = dv(1);
13 delta_arm = dv(2);
14 alpha = alpha_ref;
15 beta = dv(3);
16 ddelta_motor = dv(4);
17 ddelta_arm = dv(5);
18 ddelta_sp = dv(6);
19 u = 0;
20

21 x = [delta_motor; delta_arm; alpha; beta; ddelta_arm; ...
ddelta_arm; 0; 0; ddelta_sp; 0];

22 xdot = carousel_lagrange(x,u) - [ddelta_arm; ddelta_arm; ...
0; 0; 0; 0; 0; 0; 0; 0];

23 ret = xdot;
24

25 end

A.11 step_response_experiment.m

1 %This script compares experimental data of a step response ...
to the

2 %corresponding simulation data in order to judge how good ...
the model fits

3 %the real system. The .nc files can be downloaded from the ...
git respository

4 %https://github.com/thilobro/state_space_control_thesis
5 %ATTENTION: to run this script successfully, ...

carousel_lagrange has to be
6 %changed to ddelta_motor_sp control
7

8 %read in experimental data
9 ncid1 = netcdf.open('siemensSensorsData6.nc');

10 timestamp1 = netcdf.getVar(ncid1, 0);
11 carouselspeed_sp = netcdf.getVar(ncid1, 6);
12 ncid2 = netcdf.open('lineAngleSensor2Data6.nc');
13 timestamp2 = netcdf.getVar(ncid2, 0);
14 azimuth = netcdf.getVar(ncid2, 1);
15 elevation = netcdf.getVar(ncid2, 2);
16 ncid3 = netcdf.open('armboneLisaSensorsData6.nc');
17 timestamp3 = netcdf.getVar(ncid3, 0);
18 qractualspeed = netcdf.getVar(ncid3, 3);
19
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20 %resample data
21 qractualspeed_resamp = interp1(timestamp3, qractualspeed, ...

timestamp1, 'spline');
22 elevation_resamp = interp1(timestamp2, elevation, ...

timestamp1, 'spline');
23 azimuth_resamp = interp1(timestamp2, azimuth, timestamp1, ...

'spline');
24

25 %get simulation data
26 [T, X, U] = carousel_dynamics_SE(carouselspeed_sp, ...

timestamp1);
27

28 %shift time axis in order to align simulation and ...
experimental data

29 Tshift = 20;
30

31 %plot data
32 figure(4);
33 clf;
34 ax(1) = subplot(3, 1, 1);
35 plot(timestamp1, carouselspeed_sp, 'r')
36 hold on;
37 plot(timestamp1, qractualspeed_resamp, 'g')
38 plot(T + Tshift, X(6, :), 'b')
39 axis([60 100 1.4 1.8]);
40 xlabel('t [s]')
41 ylabel('Arm/Motor Speed [rad/s]')
42 legend('Motor Speed SP','Measured Arm Speed','Simulated ...

Arm Speed')
43 ax(2) = subplot(3, 1, 2);
44 plot(T + Tshift, 180/pi*X(3, :), 'b');
45 hold on;
46 plot(timestamp1, 180/pi*elevation_resamp, 'g')
47 axis([60 100 -70 -30]);
48 legend('Simulated Elevation','Measured Elevation')
49 xlabel('t [s]')
50 ylabel('Elevation [deg]')
51 ax(3) = subplot(3, 1, 3);
52 plot(T + Tshift, 180/pi*X(4, :), 'b')
53 hold on;
54 plot(timestamp1, azimuth_resamp, 'g')
55 axis([60 100 -3 2]);
56 legend('Simulated Azimuth', 'Measured Azimuth')
57 xlabel('t [s]')
58 ylabel('Azimuth [deg]')
59

60 linkaxes(ax, 'x')
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