
Solution of Boundary Value Problems (BVP)

Moritz Diehl

Overview

I Single Shooting

I ODE Sensitivities

I Collocation

I Multiple Shooting

Two Point BVP

Find trajectory satisfying

0 = r(y(0), y(T)), (boundary conditions)
ẏ(t) = f (y(t)) t ∈ [0,T], (ODE model)

6

y(0)r trajectory y(t)
y(T)r

-p

Single Shooting

Guess initial value for y0. Use numerical integration to obtain
trajectory as function y(t; y0) of y0.

6

y0 r trajectory y(t; y0)
y(T ; y0)r

-p
Obtain in particular terminal value y(T ; y0).

Single Shooting (contd.)

The only remaining equation is

r(y0, y(T ; y0)︸ ︷︷ ︸
=F (y0)

= 0

which might or might not be satisfied for the guess y0.
Fortunately, r has as many components as y0, so we can apply
Newton’s method for root finding of

F (y0) = 0

which iterates

yk+1
0 = yk0 −

(
∂F

∂y0
(yk0)

)−1

F (yk0)

Attention: to evaluate ∂F
∂y0

(yk0) = ∂r
∂y0

+ ∂r
∂y(T)

∂y(T ;y0)
∂y0

we have to
compute ODE sensitivities.

ODE Sensitivities

How to compute the sensitivity

∂y(T ; y0)

∂y0

of a numerical ODE solution y(T ; y0) with respect to the initial
value y0? Four ways:

I External Numerical Differentiation (END)

I Variational Differential Equations

I Automatic Differentiation

I Internal Numerical Differentiation (IND)

External Numerical Differentiation

Perturb y0 and call integrator several times to compute derivatives
by finite differences:

y(T ; y0 + εei)− y(T ; y0)

ε

Very easy to implement, but several problems:

I Relatively expensive, have overhead of error control for each
varied trajectory.

I Due to adaptivity, each call might have different discretization
grids: output y(T ; y0) is not differentiable!

I How to chose perturbation stepsize? Rule of thumb:
ε =
√
TOL if TOL is integrator tolerance.

I Looses half the digits of accuracy. If integrator accuracy has
(typical) value of TOL = 10−4, derivative has only two valid
digits!

Variational Differential Equations

Solve additional matrix differential equation

Ġ =
∂f

∂y
(y)G , G (0) = I

Very accurate at reasonable costs, but:

I Have to obtain explicit expression for ∂f
∂y (y).

I Computed sensitivity is not 100 % identical with derivative of
(discretized) integrator result y(T ; y0).

Automatic Differentiation

Treat integration routine by Automatic Differentiation (AD), i.e.
differentiate each step of the integration scheme. For illustration,
regard Euler integrator (never used in practice!), which gives, when
differentiated:

G (tk + h) = G (tk) + h
∂f

∂y
(y(tk))G (tk), G (0) = I

Very accurate, and up to machine precision 100 % identical with
derivative of numerical solution y(T ; y0), but:

I Have to obtain explicit expression for ∂f
∂y (y)

I For Automatic Differentiation, need integrator and right hand
side (f (y)) be written in same or compatible computer
languages (e.g. C++ when using ADOL-C)

Internal Numerical Differentiation (IND)

Differentiate each step of the integration scheme numerically, or
evaluate simultaneously all perturbed trajectories yi . Like
External Numerical Differentiation, but with frozen discretization
grid and fixing also all other adaptivities. For illustration, regard
Euler integrator (never used in practice!):

yi (tk + h) = yi (tk) + hf (yi (tk)), yi (0) = y0 + εei

Very efficient, easy to use, and up to cancellation and linearization
errors identical with derivative of numerical solution y(T ; y0), but:

I How to chose perturbation stepsize? Rule of thumb:
ε =
√
PREC if PREC is machine precision.

Note: adaptivity of nominal trajectory only, reuse of matrix
factorization in implicit methods, so not only more accurate, but
also cheaper than END.

Integrator Types

Several types of integrator exist, and most come also in variants
that deliver sensitivities:

I Explicit Runge-Kutta-Fehlberg (RKF) Methods, e.g. the
famous RKF45 (Order 4 with Stepsize Control based on Order
5) (good for non-stiff systems)

I Implicit Runge-Kutta Methods

I Linear Multistep Methods like the famous
Backwards-Differentiation-Formulae (BDF) Methods (good
for stiff systems e.g. in chemical engineering) (DAESOL,
DDASAC, DASSL, SUNDIALS, ...)

I Extrapolation Methods (LIMEX)

I . . .

Models with Switches

If right hand side contains discontinuities, integrator with explicit
treatment of switches must be used.
Typical grammar:

ẏ =

{
f1(y) if s(y) ≥ 0
f2(y) if s(y) < 0

with “switching functions” s(y).
Sensitivity update formulae can be derived, but are very complex.
Few integrators for switches and sensitivities exist.

Overview

I Single Shooting

I ODE Sensitivities

I Collocation

I Multiple Shooting

Collocation (Sketch)

I Discretize states on grid with node values si ≈ y(ti).

I Replace infinite ODE

0 = ẏ(t)− f (y(t)), t ∈ [0,T]

by finitely many equality constraints

ci (si , si+1) = 0, i = 0, . . . ,N − 1,

e.g. ci (si , si+1) := si+1−si
ti+1−ti

− f
(
si+si+1

2

)

Higher Order Collocation

Typically have intermediate grid points, e.g. M = 2, 3 or 4 per
subinterval. Denote s0 as initial value at start time t0 of
interval. Collocation time points t1, . . . , tM have unknown
node values s1, . . . , sM .

Use interpolation polynomial p(t; s0, . . . , sM) of degree M
satisfying

p(t i ; s0, . . . , sM) = s i , i = 0, . . . ,M.

Determine node values uniquely by derivative conditions

∂p

∂t
(t i ; s0, . . . , sM) = f (s i), i = 1, . . . ,M

Can achieve high order by chosing t i e.g. as Gauss-Integration
points. Similar to implicit Runge-Kutta Integrators.

Couple start and end points of consecutive intervals, i.e.
sMk = s0k+1.

Nonlinear Equation in Collocation

After discretization, obtain large scale, but sparse nonlinear
equation system:

r(s0, sN) = 0, (boundary conditions)
ci (si , si+1) = 0, i = 0, . . . ,N − 1, (discretized ODE)

Solve with Newton’s method. Exploit sparsity in linear system
setup and solution.

Multiple Shooting for BVPs

I Divide time horizon into intervals

I Solve ODE on each interval [ti , ti+1] numerically, starting with
artificial initial value si :

ẏi (t; si) = f (yi (t; si)), t ∈ [ti , ti+1],
yi (ti ; si) = si .

Obtain trajectory pieces yi (t; si).

Sketch of Multiple Shooting

r r r r r
6

s0 s1
si si+1

yi (ti+1; si) 6= si+1

@
@R r r r r r

6

fr
-q

t0

q
t1

q q
ti

q
ti+1

q q
tN−1

r sN−1

q
tN

r sN

Nonlinear Equation in Multiple Shooting

q q q q q q q q q q6

bq
-p p p p p p p

q
p
q

r(s0, sN) = 0, (boundary conditions)
si+1 − yi (ti+1; si) = 0, i = 0, . . . ,N − 1, (continuity conditions)

Summarize all variables as w = (s0, . . . , sN), and nonlinear
equations as

F (w) = 0

Structured Jacobian

Jacobian of this system is block sparse:

∂F

∂w
=

R0 RN

−A0 I
−A1 I

−A2 I
. . .

−AN−1 I

Can exploit this in numerical solution procedure for Newton step

∂F

∂w
∆w = −F (w)

Linearization = Linear Discrete Time System

For computation of Newton step

∆w = (∆s0, . . . ,∆sN)

via
∂F

∂w
∆w = −F (w)

the linearized continuity conditions represent linear discrete time
system:

∆si+1 = (yi (ti+1; si)− si+1) + Ai∆si , i = 0, . . . ,N − 1.

Condensing

Can eliminate all ∆s1, . . . ,∆sN as function of ∆s0, by a vector and
matrix recursion:

b0 = 0, bi+1 = (yi (ti+1; si)− si+1) + Aibi , i = 0, . . . ,N − 1.

G0 = I, Gi+1 = AiGi , i = 0, . . . ,N − 1.

to obtain
∆si = bi + Gi∆s0 i = 0, . . . ,N.

This technique of eliminating the states is called “condensing”.

Small Condensed Linear System

The linearized boundary equation was

R0∆s0 + RN∆sN = −r(s0, sN).

In condensed form we obtain

(R0 + RNGN)∆s0 = −r(s0, sN)− RNbN .

This has exactly the same dimensions as before in single shooting!
Thus, have nearly same costs per iteration....

Why multiple shooting?

I More freedom in initialization.

I Avoid that a well posed BVP inherits bad conditioning of
initial value problem (IVP). (example: unstable system with
fixed terminal condition)

I Have faster Newton convergence even for single shooting
initialization (example: x16 − 2 = 0).

I Can solve linear system with other approaches than
condensing for even better numerical stability (e.g. structure
preserving QR factorization of jacobian)

I in contrast to collocation, can use adaptive integrators

Summary

I Three numerical methods for solution of boundary value
problems:

I single shooting
I collocation
I multiple shooting

I shooting methods need ODE integrators with sensitivities
I Four methods to obtain ODE sensitivities:

I External Numerical Differentiation,
I Internal Numerical Differentiation,
I Variational Differential Equations
I Automatic Differentiation

References

I M.R. Osborne: On shooting methods for boundary value
problems. Journal of Mathematical Analysis and Applications,
Vol. 27, pp. 417–433, 1969.

I U. Ascher, B. Mattheij and B. Russell: Numerical Solution of
Boundary Value Problems for Ordinary Differential Equations,
SIAM Classics, 1995.

I J. Albersmeyer and M. Diehl: The Lifted Newton Method and
its Application in Optimization, SIAM J. Optim. Vol. 20, No.
3, pp. 1655-1684, 2010.

