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I Structure Exploitation by Riccati Recursion



Simplified Optimal Control Problem in ODE

terminal
constraint r(x(T )) ≥ 0

6
path constraints h(x, u) ≥ 0

initial value
x0 r states x(t)

controls u(t)
-p
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p
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minimize
x(·), u(·)

∫ T

0
L(x(t), u(t)) dt + E (x(T ))

subject to

x(0)− x0 = 0, (fixed initial value)
ẋ(t)−f (x(t), u(t)) = 0, t ∈ [0,T ], (ODE model)

h(x(t), u(t)) ≥ 0, t ∈ [0,T ], (path constraints)
r (x(T )) ≥ 0 (terminal constraints).



Recall: Optimal Control Family Tree
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Hamilton-Jacobi-
Bellman Equation:

Tabulation in
State Space

Indirect Methods,
Pontryagin:

Solve Boundary
Value Problem

Direct Methods:
Transform into

Nonlinear Program
(NLP)
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Single Shooting:
Only discretized
controls in NLP
(sequential)

Collocation:
Discretized controls
and states in NLP
(simultaneous)

Multiple Shooting:
Controls and node
start values in NLP

(simultaneous/hybrid)



Direct Methods

I “First discretize, then optimize”

I Transcribe infinite problem into finite dimensional, Nonlinear
Programming Problem (NLP), and solve NLP.

I Pros and Cons:

+ Can use state-of-the-art methods for NLP solution.
+ Can treat inequality constraints and multipoint constraints

much easier.
- Obtains only suboptimal/approximate solution.

I Nowadays most commonly used methods due to their easy
applicability and robustness.



Direct Single Shooting [Hicks, Ray 1971; Sargent, Sullivan 1977]

Discretize controls u(t) on fixed grid 0 = t0 < t1 < . . . < tN = T ,
regard states x(t) on [0,T ] as dependent variables.

6

x0r states x(t; q)

discretized controls u(t; q)

q0

q1

qN−1 -p
0 t

p
T

Use numerical integration to obtain state as function x(t; q) of
finitely many control parameters q = (q0, q1, . . . , qN−1)



NLP in Direct Single Shooting

After control discretization and numerical ODE solution, obtain
NLP:

minimize
q

∫ T

0
L(x(t; q), u(t; q)) dt + E (x(T ; q))

subject to

h(x(ti ; q), u(ti ; q)) ≥ 0,
i = 0, . . . ,N,

(discretized path constraints)

r (x(T ; q)) ≥ 0. (terminal constraints)

Solve with finite dimensional optimization solver, e.g. Sequential
Quadratic Programming (SQP).



Solution by Standard SQP

Summarize problem as

min
q

F (q) s.t. H(q) ≥ 0.

Solve e.g. by Sequential Quadratic Programming (SQP), starting
with guess q0 for controls. k := 0

1. Evaluate F (qk),H(qk) by ODE solution, and derivatives!

2. Compute correction ∆qk by solution of QP:

min
∆q
∇F (qk)T∆q+

1

2
∆qTAk∆q s.t. H(qk)+∇H(qk)T∆q ≥ 0.

3. Perform step qk+1 = qk + αk∆qk with step length αk

determined by line search.



Hessian in Quadratic Subproblem

Matrix Ak in QP

min
∆q
∇F (qk)T∆q +

1

2
∆qTAk∆q s.t. H(qk) +∇H(qk)T∆q ≥ 0.

is called the Hessian matrix. Several variants exist:

I exact Hessian: Ak = ∇2
qL(q, µ) with µ the constraint

multipliers. Delivers fast quadratic local convergence.

I Update Hessian using consecutive Lagrange gradients, e.g. by
BFGS formula: superlinear

I In case of least squares objective F (q) = 1
2‖R(q)‖2

2 can also
use Gauss-Newton Hessian (good linear convergence).

Ak =
(∂R
∂q

(qk)
)T ∂R

∂q
(qk)



Direct Single Shooting

I Sequential simulation and optimization.
I Pros and Cons

+ Can use state-of-the-art ODE/DAE solvers.
+ Few degrees of freedom even for large ODE/DAE systems.
+ Active set changes easily treated.
+ Need only initial guess for controls q.
- Cannot use knowledge of x in initialization (e.g. in tracking

problems).
- ODE solution x(t; q) can depend very nonlinearly on q.
- Unstable systems difficult to treat.

I Often used in engineering applications e.g. in packages gOPT
(PSE), DYOS (Marquardt), ...



Direct Collocation (Sketch) [Tsang et al. 1975]

I Discretize controls and states on fine grid with node values
si ≈ x(ti ).

I Replace infinite ODE

0 = ẋ(t)− f (x(t), u(t)), t ∈ [0,T ]

by finitely many equality constraints

ci (qi , si , si+1) = 0, i = 0, . . . ,N − 1,

e.g. ci (qi , si , si+1) := si+1−si
ti+1−ti

− f
(
si+si+1

2 , qi

)
I Approximate also integrals, e.g.∫ ti+1

ti

L(x(t), u(t))dt ≈ li (qi , si , si+1) := L

(
si + si+1

2
, qi

)
(ti+1−ti )



NLP in Direct Collocation

After discretization obtain large scale, but sparse NLP:

minimize
s, q

N−1∑
i=0

li (qi , si , si+1) + E (sN)

subject to

s0 − x0 = 0, (fixed initial value)
ci (qi , si , si+1) = 0, i = 0, . . . ,N − 1, (discretized ODE model)

h(si , qi ) ≥ 0, i = 0, . . . ,N, (discretized path constraints)
r (sN) ≥ 0. (terminal constraints)

Solve e.g. with SQP method for sparse problems, or interior point
methods (IPM).



What is a sparse NLP?

General NLP:

min
w

F (w) s.t.

{
G (w) = 0,
H(w) ≥ 0.

is called sparse if the Jacobians (derivative matrices)

∇wG
T =

∂G

∂w
=

(
∂G

∂wj

)
ij

and ∇wH
T

contain many zero elements.

In SQP or IPM methods, this makes subproblems much
cheaper to build and to solve.



Direct Collocation

I Simultaneous simulation and optimization.
I Pros and Cons:

+ Large scale, but very sparse NLP.
+ Can use knowledge of x in initialization.
+ Can treat unstable systems well.
+ Robust handling of path and terminal constraints.
- Adaptivity needs new grid, changes NLP dimensions.

I Successfully used for practical optimal control e.g. by Biegler
and Wächter (IPOPT), Betts, Bock/Schulz (OCPRSQP), v.
Stryk (DIRCOL), ...



Direct Multiple Shooting [Bock and Plitt, 1981]

I Discretize controls piecewise on a coarse grid

u(t) = qi for t ∈ [ti , ti+1]

I Solve ODE on each interval [ti , ti+1] numerically, starting with
artificial initial value si :

ẋi (t; si , qi ) = f (xi (t; si , qi ), qi ), t ∈ [ti , ti+1],
xi (ti ; si , qi ) = si .

Obtain trajectory pieces xi (t; si , qi ).

I Also numerically compute integrals

li (si , qi ) :=

∫ ti+1

ti

L(xi (ti ; si , qi ), qi )dt



Sketch of Direct Multiple Shooting
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NLP in Direct Multiple Shooting
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minimize
s,q

N−1∑
i=0

li (si , qi ) + E (sN)

subject to

s0 − x0 = 0, (initial value)

si+1 − xi (ti+1; si , qi ) = 0, i = 0, . . . ,N − 1, (continuity)

h(si , qi ) ≥ 0, i = 0, . . . ,N, (discretized path constraints)

r (sN) ≥ 0. (terminal constraints)



Structured NLP

I Summarize all variables as w := (s0, q0, s1, q1, . . . , sN).

I Obtain structured NLP

min
w

F (w) s.t.

{
G (w) = 0
H(w) ≥ 0.

I Jacobian ∇G (wk)T contains dynamic model equations.

I Jacobians and Hessian of NLP are block sparse, can be
exploited in numerical solution procedure.



QP = Discrete Time Problem

min
x , u

N−1∑
i=0

 1
∆s i
∆qi

T 0 qTi sTi
qi Qi ST

i

si Si Ri

 1
∆s i
∆qi

+

[
1

∆sN

]T[
0 pTN
pN PN

] [
1

∆sN

]

subject to

∆s0 − xfix
0 = 0, (initial)

∆s i+1 − Ai∆s i − Bi∆qi − ci = 0, i = 0, . . . ,N − 1, (system)
Ci∆s i + Di∆qi − ci ≤ 0, i = 0, . . . ,N − 1, (path)

CN∆sN − cN ≤ 0, (terminal)



Interpretation of Continuity Conditions

I In direct multiple shooting, continuity conditions
si+1 = xi (ti+1; si , qi ) represent discrete time dynamic system.

I Linearized reduced continuity conditions (used in condensing
to eliminate ∆s1, . . . ,∆sN) represent linear discrete time
system:

∆si+1 = (xi (ti+1; si , qi )− si+1) + Xi∆sxi + Yi∆qi = 0,

i = 0, . . . ,N − 1.

I If original system is linear, continuity is perfectly satisfied in
all SQP iterations.

I Lagrange multipliers λi for the continuity conditions are
approximation of adjoint variables. They indicate the costs
of continuity.



Condensing Technique [Bock, Plitt, 1984]

As before in multiple shooting for BVPs, can use “condensing” of
linear system equations


X0 Y0 −I

X1 Y1 −I
. . .

. . .

XN−1 YN−1 −I





∆s0

∆q0

∆s1

∆q1

∆s2
...

∆sN−1

∆qN−1

∆sN


=


c1

c2
...
cN



to eliminate ∆s1, . . . ,∆sN from QP.
Results in condensed QP in variables ∆s0 and ∆q0, . . . ,∆qN only.



Riccati Recursion

Alternative to condensing: can use Riccati recursion within QP
solver addressing the full, uncondensed, but block sparse QP
problem.

I Same algorithm as discrete time Riccati difference equation

I Linear effort in number N of shooting nodes, compared to
O(N3) for condensed QP.

I Use Interiour Point Method to deal with inequalities, or
Schur-Complement type reduction techniques.



Direct Multiple Shooting

I Simultaneous simulation and optimization.
I Pros and Cons

+ uses adaptive ODE/DAE solvers
+ but NLP has fixed dimensions
+ can use knowledge of x in initialization (here bounds; more

important in online context).
+ can treat unstable systems well.
+ robust handling of path and terminal constraints.
+ easy to parallelize.
- not as sparse as collocation.

I Used for practical optimal control e.g by Franke (“HQP”),
Terwen (DaimlerChrysler); Santos and Biegler; Bock et al.
(“MUSCOD-II”)


