Direct Single and Direct Multiple Shooting

Moritz Diehl



Overview

v

Direct Single Shooting
The Gauss-Newton Method
Direct Multiple Shooting

v

v

v

Structure Exploitation by Condensing

v

Structure Exploitation by Riccati Recursion



Simplified Optimal Control Problem in ODE

path constraints h(x, u) > 0

states x(t) ¥ terminal

initial valuexo ‘ constraint r(x(T)) > 0
controls u(t) i
0 : T
T
minimize / L(x(t),u(t)) dt + E(x(T))
X(')? U() 0
subject to
x(0)—x = 0, (fixed initial value)
x(t)—f(x(t),u(t)) = O, telo, T], (ODE model)
h(x(t),u(t)) > 0, te|0, T], (path constraints)
r(x(T)) > 0 (terminal constraints).



Recall: Optimal Control Family Tree
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Direct Methods

> “First discretize, then optimize”
» Transcribe infinite problem into finite dimensional, Nonlinear
Programming Problem (NLP), and solve NLP.
» Pros and Cons:
+ Can use state-of-the-art methods for NLP solution.
-+ Can treat inequality constraints and multipoint constraints
much easier.
- Obtains only suboptimal/approximate solution.
» Nowadays most commonly used methods due to their easy

applicability and robustness.



Direct Slngle Shooting [Hicks, Ray 1971; Sargent, Sullivan 1977]

Discretize controls u(t) on fixed grid 0 =tg < t1 < ... <ty =T,
regard states x(t) on [0, T| as dependent variables.

states x(t;
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Use numerical integration to obtain state as function x(t; q) of
finitely many control parameters g = (qo, g1, - -, qn—1)



NLP in Direct Single Shooting

After control discretization and numerical ODE solution, obtain
NLP:

-
minimize /0 L(x(t; q),u(t;q))dt+ E(x(T;q))

q
subject to
h().((t" q), u(tiq)) = 0, (discretized path constraints)
i=0,....,N—1,
r(x(T;q))>0. (terminal constraints)

Solve with finite dimensional optimization solver, e.g. Sequential
Quadratic Programming (SQP).



Solution by Standard SQP

Summarize problem as

mqin F(q) s.t. H(q)>0.

Solve e.g. by Sequential Quadratic Programming (SQP), starting
with guess g° for controls. k := 0

1. Evaluate F(g), H(g¥) by ODE solution, and derivatives!
2. Compute correction Ag¥ by solution of QP:

1
n&in VF(qk)TAq+§AqTAkAq st. H(gX)+VH(g") ' Ag > 0.
q

3. Perform step gkt1 = g¥ + a, Agk with step length ay
determined by line search.



Hessian in Quadratic Subproblem
Matrix A% in QP
1
n&in VF(q) Ag+ EAqTAkAq st. H(g") + VH(¢")TAg > 0.
q

is called the Hessian matrix. Several variants exist:

> exact Hessian: Ak = Vgﬁ(q, @) with g the constraint
multipliers. Delivers fast quadratic local convergence.

> Update Hessian using consecutive Lagrange gradients, e.g. by
BFGS formula: superlinear

> In case of least squares objective F(q) = 1||R(q)||3 can also
use Gauss-Newton Hessian (good linear convergence).

Ak (8R >T8R

(4“) (4“)



The Generalized Gauss-Newton Method

» Aim: solve constrained nonlinear least squares problems:
.1 >
min S [IR(q)l2 st H(q) = 0.
» Generalized Gauss-Newton solves in each iteration:
1
min 5H/Le(qk)WR(qk)TAqu s.t. H(g")+VH(¢")"Ag >o0.

» This is a QP and equivalent to

. 1
min R(ax) ' VR(ax)' Aa+ 580" VR(a)VR(a) ' Ag
=VF(a)" —A
st. H(g")+ VH(¢")"Ag > 0.



Properties of Gauss-Newton Hessian

» Gauss-Newton Hessian Ay := VR(qx)VR(qx)" is symmetric
and has only non-zero eigenvalues. Thus, QP subproblems are
convex.

> Ay is similar to V%E(qk,,uk), but not equal.
> Using £(q, 1) = 3[|R(q)[I5 — H(q)" 1 and

72 (3IR@I3) = VR@ITR() " + > Ra)VR ()
i=1

we get V3L(q, 1) =

VR(q)VR(a)" + > Ri(@)V?Ri(q) = > _ 1iV?Hi(q)
i=1 i=1

error (small if ||R(q)|| small at solution)
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Direct |\/|u|t|p|e Shooting [Bock and Plitt, 1981]

» Discretize controls piecewise on a coarse grid
u(t)=gq; for t €[t ti1]

» Solve ODE on each interval [t;, tj+1] numerically, starting with
artificial initial value s;:

xi(t;si,qi) = f(xi(t;si,qi),qi), t€[ti, tit],
xi(ti;si,qi) = si.

Obtain trajectory pieces x;(t;s;, ;).

> Also numerically compute integrals

tit1
/,-(s,-,q,-) = / L(x,-(t,-;s,-,q,-),q,-)dt
ti



Sketch of Direct Multiple Shooting
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NLP in Direct Multiple Shooting

N-1

min;rc’r,ﬂze Z/i(ShCli) + E(sn)
i=0

subject to

so—xp =0, initial value)

h(siuqf)z()’ I':O,...,/V7
r(sy) > 0.

(

Siy1 — X,'(I','+1; Si, q,-) =0,i=0,...,N—1, (continuity)
(discretized path constraint
(

terminal constraints)



Structured NLP

» Summarize all variables as w := (sp, qo, 51, q1, - - -, SN)-
Obtain structured NLP

v

, G(w) =0
min F(w) st { ngg > 0.

Jacobian VG(w¥)T contains dynamic model equations.

v

v

Jacobians and Hessian of NLP are block sparse, can be
exploited in numerical solution procedure.



QP = Discrete Time Problem

wa[ 1970 g 5 1170 pi][ 1
Asi| g Qi S| As; +[ ][ p’V][ ]

min
XU i=o |Ag;| |si Si RiJlAg; Aen]Lpw Pu] | Asn
subject to
Aso —xfx = 0, (initial)
Asii1 — AiAs; — BiAg; — =0, i=0,...,N—1, (system)
CiAsi+ DiAqg; — C, < 0, i=0,...,N—1, (path)
CyAsy —cy < 0, (terminal)



Interpretation of Continuity Conditions

> In direct multiple shooting, continuity conditions
si+1 = Xxi(ti+1; Si, i) represent discrete time dynamic system.
» Linearized reduced continuity conditions (used in condensing
to eliminate Asy, ..., Asy) represent linear discrete time
system:

Asiy1 = (xi(tiv1; i, qi) — siv1) + XiAs[ + YiAgi =0,
i=0.. N—1

» If original system is linear, continuity is perfectly satisfied in
all SQP iterations.

» Lagrange multipliers A; for the continuity conditions are
approximation of adjoint variables. They indicate the costs
of continuity.



Condensing Techniq UE  [Bock Plitt, 1984]

As before in multiple shooting for BVPs, can use “condensing” of
linear system equations

AS()
_ Aqo
Xo Yo -1 As;
X1 Yl —I Aql

' AS2 —

1
%

o]

Xno1 Yno1 —T| | Asn-a
Agn-1
| Asy |

to eliminate Asy, ..., Asy from QP.
Results in condensed QP in variables Asy and Aqo, ..., Aqy only.



Riccati Recursion

Alternative to condensing: can use Riccati recursion within QP
solver addressing the full, uncondensed, but block sparse QP
problem.
» Same algorithm as discrete time Riccati difference equation
> Linear effort in number N of shooting nodes, compared to
O(N3) for condensed QP.

» Use Interiour Point Method to deal with inequalities, or
Schur-Complement type reduction techniques.



Summary

» Direct Single and Multiple Shooting solve equivalent NLPs,
i.e. they have the same discretization errors.

» Multiple shooting keeps the initial states of all shooting
intervals as optimization variables, while single shooting
eliminates all states by a forward simulation.

» The Generalized Gauss-Newton method is advantageous in
case of least-squares cost functions with small residuals



