

SkySails Tethered Kites for Ship Propulsion and Power Generation: Modeling and System Identification

Michael Erhard, SkySails GmbH, Hamburg, Germany

Small-Scale Functional Model (50kW peak power)

Contents

- Introduction SkySails Marine and Power
- Simple Model
- Sensors and Navigation
- Validation of Model and Parameter Estimation
- Control System
- Further Challenges of the Real-World System

Business Segments

KITE PROPULSION

aux. propulsion system

- up to 2000 kW engine equivalent power
- pilot customer operation since 2008
- autopilot controlled

PERFORMANCE MANAGER

- improved communication ship to shore
- automatic fuel and condition monitoring
- in operation on 35+ ships

SKYSAILS POWER

- small scale model for airborne wind energy
- installed in a trailer
- kites up to 30 m²
- autopilot controlled

SkySails Marine – Towing Kite System

Airborne Control Pod

Kite sizes up to 320m²

Substitute 1-2 MW of main engine power

System Overview

Kite - Reefing

Machine Supported Ground Handling

Production and Installation

SkySails

(Marine Video)

See http://youtu.be/ckyHeizCAdk

SKYSAILS POWER Development

SkySails POWER

• Pumping Cycle

SkySails Power

Economic energy generation \rightarrow Fully automated AWE plants

→ Reliability of control system crucial

(Power Video)

Coordinate System

- Position arphi , artheta , l
- Orientation ψ

Model Assumptions

- 1.) Forces huge compared to masses → Neglect Accelerations & Masses
- 2.) Airflow in Roll Direction

3.) Glide Ratio Condition

Aerodynamics of Tethered Kites

Paraglider (Free flight) : $v_{tot} = 10 \text{ m/s}$

 $E = \frac{v_{\rm hor}}{v_{\rm vert}}$

Tethered Kite:

 $v_{tot} = 1..E v_0$ $F_{tot} = 1..E^2 F_0$ Wind $v_0 = 10m/s$ with E=5 yields $v_{tot} = 10..50m/s$!

• Equations of motion for φ , ϑ and l (3d kite position)

Kinematic Equations of Motion

$$\dot{\vartheta} = \frac{v_{a}}{l} \left(\cos \psi - \frac{\tan \vartheta}{E} \right)$$
$$\dot{\varphi} = -\frac{v_{a}}{l \sin \vartheta} \sin \psi$$

Angle Ψ is the central control variable:

- Determines force $\vartheta_0(\psi) = \arctan(E\cos\psi)$
- Keep static zenith position (φ =const)

$$\dot{\varphi} = -\frac{v_{\rm a}}{l\sin\vartheta}\sin\psi$$

$$\dot{\vartheta} = \frac{v_a}{l} \left(\cos \psi - \frac{\tan \vartheta}{E} \right)$$

$$\dot{\varphi} = -\frac{v_a}{l\sin\vartheta}\sin\psi$$

1

Control of Orientation ψ

Steering

Steering by means of canopy (and force vector) rotation

Sensors and Navigation

Control Pod Sensors

Sensor Overview

Inertial Navigation

• Quaternion integration...

SkySails

POWER

• Problem: drift of turn rate sensors

Inertial Navigation

SkySails POWER

Reference to ,Down'-Direction

Yaw Angle Estimator

M. Erhard, H. Strauch, Sensors and Navigation Algorithms for Flight Control of Tethered Kites, Proc. European Control Conf., 2013

Experimental Results

Wind Referencing

Complementary Filter

M. Erhard, H. Strauch, Sensors and Navigation Algorithms for Flight Control of Tethered Kites, Proc. European Control Conf., 2013

Validation of kinematics

Validation of Kinematics

Validation of Kinematics

Validation of Turn Rate Law

Challenges:

- How to fly open loop and not crash ?
- Flight pattern ?
- Operational point ? (Flight speed, wind window position, ...)

System Identification

Extended Turn Rate Law

Online Parameter Estimation

Online Parameter Estimation

Recursive algorithm:

$$\hat{\theta}_{t} = \overline{R}^{-1}(t)f(t)$$
$$\overline{R}(t) = \lambda \overline{R}(t-1) + \varphi(t)\varphi^{T}(t)$$
$$f(t) = \lambda f(t-1) + \varphi(t)y(t)$$

Applications:

- System monitoring (degrading, damage, ...)
- > Adaption of controller

Online Parameter Estimation

Control System

Human Control Strategy?

Use Angle w.r.t. horizon (or wind)
Orientation determines flight direction

Controlled System (Plant)

Control System

Controller Performance

Limits and challenges

Challenges and limits

Challenges and limits

Soft Materials

→ Modelling Accuracy is limited

→ Limited Sensor `Accuracy'

Free flight

SkySails

Due to gusts or wave induced motion: temporarily untethered system

Thank you for your Attention!

Questions?