Exercise 3: Another review of optimization, systems, and statistics

 (to be returned on Nov 11, 2014, 8:15 in HS 101.00.026, or before in building 102, 1st floor, 'Anbau')Prof. Dr. Moritz Diehl and Robin Verschueren

Solutions

1. The gradient of a scalar function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a vector with the partial derivatives with respect to $x_{k}, k=1 \ldots n$:

$$
\begin{aligned}
(\nabla f(x))_{k} & =\frac{\partial}{\partial x_{k}}\left[x^{\top} Q x+c^{\top} x\right], \\
& =\frac{\partial}{\partial x_{k}}\left[\sum_{i=1}^{n} x_{i} \cdot \sum_{j=1}^{n} Q_{i, j} x_{j}+\sum_{i=1}^{n} c_{i} x_{i}\right] .
\end{aligned}
$$

Using the product rule of differentiation, we have

$$
=\sum_{j=1}^{n} Q_{k, j} x_{j}+\sum_{i=1}^{n} x_{i} Q_{i, k}+c_{k} .
$$

Collecting this partial derivatives for $k=1 \ldots n$ in a vector, we get

$$
\nabla f(x)=\left(Q+Q^{\top}\right) x+c
$$

The Hessian is the matrix of second partial derivatives.

$$
\begin{aligned}
\left(\nabla^{2} f(x)\right)_{k, l} & =\frac{\partial}{\partial x_{l} \partial x_{k}}\left[x^{\top} Q x+c^{\top} x\right], \\
& =Q_{k, l}+Q_{l, k},
\end{aligned}
$$

Or, in matrix form

$$
\nabla^{2} f(x)=Q+Q^{\top} .
$$

Note that the Hessian is symmetric. This holds generally under continuity of f.
If Q is symmetric and positive definite, it can be inverted. The stationary point x^{*} amounts to

$$
\begin{aligned}
0 & =\left(Q+Q^{\top}\right) x^{*}+c, \\
x^{*} & =-\frac{1}{2} Q^{-1} c .
\end{aligned}
$$

This stationary point is a minimizer because of positive definiteness of Q , which implies convexity of f. The minimum function value is then

$$
\begin{aligned}
f\left(x^{*}\right) & =x^{* \top} Q x^{*}+c^{\top} x^{*}, \\
& =+\frac{1}{4} c^{\top} Q^{-1} Q Q^{-1} c-\frac{1}{2} c^{\top} Q^{-1} c, \\
& =-\frac{1}{4} c^{\top} Q^{-1} c .
\end{aligned}
$$

2. We use the following facts from basic mechanics, where we denote the position, the velocity, acceleration, force and mass with s, v, a, F, m respectively:

$$
\begin{gathered}
F(t)=m \cdot a(t) \\
\frac{\mathrm{d} s(t)}{\mathrm{d} t}=v(t) \\
\frac{\mathrm{d} v(t)}{\mathrm{d} t}=a(t)
\end{gathered}
$$

For our hockey puck system, we are interested in the 2-D position. We can derive the following equations of motion from the basic facts above:

$$
\begin{array}{r}
\frac{\mathrm{d} s_{X}(t)}{\mathrm{d} t}=v_{X}(t), \\
\frac{\mathrm{d} v_{X}(t)}{\mathrm{d} t}=F_{X}(t) / m, \\
\frac{\mathrm{~d} s_{Y}(t)}{\mathrm{d} t}=v_{Y}(t), \\
\frac{\mathrm{d} v_{Y}(t)}{\mathrm{d} t}=F_{Y}(t) / m .
\end{array}
$$

In state-space form $(\dot{x}=A x+B u)$ this becomes

$$
\left[\begin{array}{c}
\dot{s_{X}} \\
\dot{v}_{X} \\
\dot{s}_{Y} \\
\dot{v_{Y}}
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
s_{X} \\
v_{X} \\
s_{Y} \\
v_{Y}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
1 / m & 0 \\
0 & 0 \\
0 & 1 / m
\end{array}\right]\left[\begin{array}{l}
F_{X} \\
F_{Y}
\end{array}\right] .
$$

