
Numerical Optimal Control, August 2014

Exercise 2: Nonlinear programming

Joel Andersson Joris Gillis Moritz Diehl University of Freiburg – IMTEK

August 4th, 2014

Getting started with CasADi

Go to the CasADi website and locate the user guide. With a Python interpretor in front of you,
read Chapter 3, except Sections 3.5 and 3.6.1, as well as Sections 4.1 and 4.2 in Chapter 4.

Nonlinear programming in CasADi

CasADi can be used to solve parametric NLPs of the following form:

minimize
x

f(x, p)

subject to
xlb ≤ x ≤ xub,
glb ≤ g(x, p) ≤ gub,

where x ∈ Rn is the decision variable and p ∈ Rm is a fixed (and known) parameter vector.

Equality constraints are formulated by having upper and lower bound equal, i.e. g
(k)
lb = g

(k)
ub for

some k. In the following, p is absent.
In order to allocate an solver, we construct a CasADi function that takes x (and possibly

p) as inputs and returns f and g. This can be done with the syntax:

x = SX.sym("x",n)

f = ...

g = ...

nlp = SXFunction(nlpIn(x=x),nlpOut(f=f,g=g))

This function is than used to construct an NLP solver instance as follows:

nlp_solver = NlpSolver("ipopt",nlp)

where we use CasADi’s interface to the open-source NLP solver IPOPT. From the symbolic
expressions, the interface will then automatically generate the information that it might need
to solve the NLP, which may be solver and option dependent. Typically, an NLP solver will need
a function that gives the Jacobian of the constraint function and a Hessian of the Lagrangian
function (L(x, λ) = f(x) + λT g(x)) with respect to x.

NLP solvers are functions in CasADi that are “evaluated” to get the solution as outlined in
Section 4.1 of the user guide, e.g.:

nlp_solver.setInput(initial_guess , "x0")

nlp_solver.setInput(lower_bound_on_x , "lbx")

nlp_solver.setInput(upper_bound_on_x , "ubx")

nlp_solver.setInput(lower_bound_on_g , "lbg")

nlp_solver.setInput(upper_bound_on_g , "ubg")

nlp_solver.evaluate () # Solve the NLP

x = nlp_solver.getOutput("x")

1

http://casadi.org

You will find the input and output schemes in the CasADi API documentation on the website
or by using the question mark in Python.

NlpSolver?

Tasks:

2.1 Formulate and solve the Rosenbrock problem:

minimize
x,y,z

x2 + 100 z2

subject to z + (1− x)2 = y
(1)

Use x = 2.5, y = 3.0, z = 0.75, as a starting point. How many iterations do you need to
to converge using default options?

2.2 By default, IPOPT will use exact Hessian information. To avoid having to calculate second
order information, we can instruct IPOPT to use a limited-memory BFGS approximation
for the Hessian using the command:

solver.setOption("hessian_approximation","limited -memory")

How does this influence the number of iterations?

2.3 Extra: A function might have multiple local minima. Consider the function:

f(x, y) = exp(−x2 − y2) sin(4 (x+ y + x ∗ y2)) (2)

in the domain [−1, 1]× [−1, 1]. You can visualize the function it using the following lines
in Python:

from numpy import *

from matplotlib import pylab as plt

Domain

x = linspace (-1,1,100)

y = linspace (-1,1,100)

[X,Y] = plt.meshgrid(x,y)

Function

F = exp(-X**2-Y**2)* sin (4*(X+Y+X*Y**2))

Plot the function

plt.clf()

plt.contour(X,Y,F)

plt.colorbar ()

plt.jet()

plt.xlabel(’x’)

plt.ylabel(’y’)

plt.show()

Find the unconstrained minimizer of the function starting at different starting points, e.g.
[0, 0], [0.9, 0, 9], [−0.9,−0, 9]. What do you see? To solve unconstrained problems with
CasADi, simply leave out the second argument to nlpOut.

2.4 Extra: Solve the hanging chain problem from Exercise 1 with nonlinear ground con-
straints (Task 1.4 and 1.5).

2

