Numerical Optimal Control, August 2014

Exercise 5: Dynamic programming

Joel Andersson Joris Gillis Greg Horn Rien Quirynen Moritz Diehl

University of Freiburg — IMTEK, August 5th, 2014

Dynamic programming for a two-state OCP

Dynamic programming and its continuous time counterpart — the Hamilton-Jacobi-Bellman
equation — can be used to calculate the global solution of an optimal control problem. Unfor-
tunately they suffer from Bellman’s so-called “curse-of-dimensionality”, meaning that they get
exponentionally expensive with the number of states and control. In practice, they can be used
for systems with 3-4 differential states or systems that have special properties.

Here we shall consider a simple OCP with two states (z1,x2) and one control (u):
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with T = 10.

To be able to solve the problem using dynamic programming, we parameterize the control
trajectory into N = 20 piecewise constant intervals. On each interval, we then take Ng steps
of a RK4 integrator in order to get a discrete-time OCP of the form:
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Tasks:

5.1 On the course webpage and on GiSﬂ you will find an incomplete implementation of
dynamic programming for problem (2). Add the missing calculation of the cost-to-go
function to get the script working.

5.2 Add the additional end-point constraint z;(7") = —0.5 and z2(7") = —0.5. How does the
solution change?

"https://gist.github.com/jaeandersson/e37e796e094b3c6cad9e
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