Exercise 5: Dynamic programming

Joel Andersson Joris Gillis Greg Horn Rien Quirynen Moritz Diehl

University of Freiburg - IMTEK, August 5th, 2014

Dynamic programming for a two-state OCP

Dynamic programming and its continuous time counterpart - the Hamilton-Jacobi-Bellman equation - can be used to calculate the global solution of an optimal control problem. Unfortunately they suffer from Bellman's so-called "curse-of-dimensionality", meaning that they get exponentionally expensive with the number of states and control. In practice, they can be used for systems with 3-4 differential states or systems that have special properties.

Here we shall consider a simple OCP with two states $\left(x_{1}, x_{2}\right)$ and one control (u) :

$$
\begin{array}{cl}
\underset{x, u}{\operatorname{minimize}} & \int_{0}^{T} x_{1}(t)^{2}+x_{2}(t)^{2}+u(t)^{2} d t \\
\text { subject to } & \dot{x}_{1}=\left(1-x_{2}^{2}\right) x_{1}-x_{2}+u, \quad x_{1}(0)=0 \tag{1}\\
& \dot{x}_{2}=x_{1}, \quad x_{2}(0)=1 \\
& -1 \leq x_{1}(t) \leq 1, \quad-1 \leq x_{2}(t) \leq 1, \quad-1 \leq u(t) \leq 1,
\end{array}
$$

with $T=10$.
To be able to solve the problem using dynamic programming, we parameterize the control trajectory into $N=20$ piecewise constant intervals. On each interval, we then take N_{K} steps of a RK4 integrator in order to get a discrete-time OCP of the form:

$$
\begin{align*}
\underset{x, u}{\operatorname{minimize}} & \sum_{k=0}^{N-1} F_{0}\left(x_{1}^{(k)}, x_{2}^{(k)}, u^{(k)}\right) \\
\text { subject to } & x_{1}^{(k+1)}=F_{1}\left(x_{1}^{(k)}, x_{2}^{(k)}, u^{(k)}\right), \quad k=0, \ldots, N-1, \quad x_{1}^{(0)}=0 \tag{2}\\
& x_{2}^{(k+1)}=F_{2}\left(x_{1}^{(k)}, x_{2}^{(k)}, u^{(k)}\right), \quad k=0, \ldots, N-1, \quad x_{2}^{(0)}=1 \\
& -1 \leq x_{1}^{(k)} \leq 1, \quad-1 \leq x_{2}^{(k)} \leq 1, \quad-1 \leq u^{(k)} \leq 1 \quad \forall k .
\end{align*}
$$

Tasks:
5.1 On the course webpage and on Gist 1 , you will find an incomplete implementation of dynamic programming for problem (2). Add the missing calculation of the cost-to-go function to get the script working.
5.2 Add the additional end-point constraint $x_{1}(T)=-0.5$ and $x_{2}(T)=-0.5$. How does the solution change?

[^0]
[^0]: ${ }^{1}$ https://gist.github.com/jaeandersson/e37e796e094b3c6cad9e

