
Numerical Optimal Control, August 2014

Exercise 8: Solving OCPs with a direct collocation

method

Joel Andersson Joris Gillis Greg Horn Rien Quirynen Moritz Diehl

University of Freiburg – IMTEK, August 5th, 2014

In this exercise, we will solve an OCP (quadcopter flight) using a direct collocation method.

Tasks:

8.1 From the course website, obtain the quadcopter model file. Save it as quadcopter.py in
your working directory, and after importing the file, instantiate the model with

model = Quadcopter ()

The quadcopter model is described by an ode:

ẋ = f(x, u) x, ẋ ∈ R17, u ∈ R4 (1)

Use Quadcopter? or help(Quadcopter) to see a description of the statespace.

8.2 Consider the following OCP in which the aim is for the quadcopter to follow a trajectory
starting from standstill:

minimize
x(t),u(t)

∫ T

0

[
||p(t)− pref(t)||22 + α||u(t)||22

]
dt

subject to ẋ = f(x, u)
0 ≤ u ≤ 0.5
p(0) = [0, 0, 0]T

v(0) = [0, 0, 0]T

(2)

In a direct collocation scheme, on each control interval, the state trajectories are approx-
imated by polynomials. Each polynomial is parametrised with points that interpolate
this polynomial. These points have the same dimensions as the state-space and are extra
decision variables. In this exercise, we will using 1-degree polynomials, needing one extra
decision variable yk for each control interval, right in the middle.

The decision variable vector should look like:

w = [x0, y0, u0, x1, y1, u1, . . . , xN−1, yN−1, uN−1, xN]T (3)

Complete the two missing parts in the following direct collocation transcription:

1

minimize
x•,y•,u•

T

N

[
N∑
k=0

||pk − prefk ||22 + α
N−1∑
k=0

||uk||22

]

subject to xk+1 =? ∀k = 0, 1, . . . N − 1 coupling constraints
? = f(yk, uk) ∀k = 0, 1, . . . N − 1 collocation constraints
0 ≤ uk ≤ 0.5 ∀k = 0, 1, . . . N − 1
p0 = [0, 0, 0]T

v0 = [0, 0, 0]T

(4)

.

Note that, in Moritz’s slides, the collocation constraints instead read like g(xk, yk, uk) = 0.
For midpoint collocation, we can use either notation.

8.3 Formulate the above NLP in CasADi and solve it with IPOPT using initial guess xk = yk =
model.x0 and uk = model.u0. Use a total time of T = 3.0s, 200 control intervals, and
α = 0.05.

Remember that formulating an NLP in CasADi starts with defining a single symbolic MX

variable. Next, you construct expression using slices of this single variable:

W = MX.sym("W",(N+1)*17+N*17+N*4)

g = []

for k in range()

g.append(stuff(W[(17+17+4)*k+17:(17+17+4)*k+17+17] ,...)) # use y_k ,...

g = vertcat(g)

nlp = MXFunction(nlpIn(x=W),nlpOut(f=f,g=g))

If all this indicing makes your head hurt, you are not alone. You should use the template
solution found on the web page. It uses a nicer technique, where W is similar to an MX, but
with convenient accessors.

8.4 Extra: The quadcopter model is in fact given by a fully implicit ode:

r(ẋ, x, u) = 0. x, ẋ ∈ R17, u ∈ R4 (5)

By using an inversion of ∂r
∂ẋ , an explicit ode can be constructed that we used in the above

exercise. Can you think of an alternative formulation that uses the implicit form r(ẋ, x, u)
directly?

8.5 Extra: Construct a time-optimal OCP with the same system. Again, a template is
available from the website.

2

