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Modelling and System Identification – Microexam 2
Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg, and ESAT-STADIUS, KU Leuven

December 16, 2014, 8:15-9:00, HS 026, GKA 101, Freiburg

Nachname: Vorname: Matrikelnummer:

Fach: Studiengang: Bachelor Master Lehramt Sonstiges

Please fill in your name above and tick exactly one box for the right answer of each question below.

1. What is the covariance matrix of Z = 3X + Y if the random variables Y,X ∈ Rn are independent and have covariance
matrices Σx,Σy?

(a) 9Σ−1
x + Σ−1

y (b) 9Σx + Σy (c) (3Σ−1
x + Σ−1

y )−1 (d) 3Σx + Σy

2. What is the covariance matrix of the random variable Y if Y = BX with B ∈ Rn×m fixed and Σx the covariance matrix of
X ∈ Rm?

(a) B>ΣxB (b) BΣ−1
x B> (c) BΣxB

> (d) (BΣ−1
x B>)−1

3. Which of the following dynamic models with inputs u(t) and outputs y(t) is not time varying ?

(a) ẏ(t)=u(t)+cos(t) (b) ÿ(t)= u(t)3 (c) t3ÿ(t) = u(t) (d) ẏ(t)3 = t2u(t)

4. Which of the following dynamic models with inputs u(t) and outputs y(t) is neither linear nor affine.

(a) t3ÿ(t) = u(t) (b) ÿ(t)= t3u(t) (c) ẏ(t)=u(t)+cos(t) (d) ẏ(t)3 = u(t)

5. Which of the following dynamic models with inputs u(t) and outputs y(t) is a linear time invariant (LTI) system ?

(a) ÿ(t) = t · u(t) (b) ẏ(t)=u(t)+sin(t) (c) ÿ(t) = 1
3u(t) (d) ẏ(t)3 = u(t)

6. Which of the following models with input u(k) and output y(k) is not linear-in-the-parameters w.r.t. θ ∈ R2?

(a) y(k) = θ1u(k)2 + θ2 sin(u(k)) (b) y(k) = θ1y(k − 1) + θ2u(k)

(c) y(k) = θ1u(k) + sin(θ2u(k)) (d) y(k) = sin(y(k − 1)) · (θ1 + θ2u(k))

7. Which transfer function G(s) describes the system ẋ(t) = x(t) + u(t), y(t) = x(t) + u(t)?

(a) s
s+1 (b) s

s−1 (c) 1
s+1 (d) s+1

s+1

8. Which system is described by the transfer function G(s) = 3
s2−1 ?

(a) ÿ − 3ẏ = u (b) ÿ − y = 3u (c) ÿ + 3ẏ = u (d) ÿ − ẏ = 3u

9. What solution y(t) has the system T ẏ(t) + y(t) = u(t) with initial value y(0)=−1 for constant input u(t)=0?

(a) y(t)= −e−t/T (b) y(t)=e−t/T (c) y(t)= −e−tT (d) y(t)=e−tT

10. What is the discrete time equivalent for the system ẏ(t) = u(t) with sampling time ∆T = 2 (time is unitless for simplicity)
under the assumption of zero-order hold for the inputs?

(a) y(k + 1) = 1
2y(k) + u(k) (b) y(k + 1) = y(k) + u(k)

(c) y(k + 1) = y(k) + 2u(k) (d) y(k + 1) = 2y(k) + 2u(k)
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11. Maximum Likelihood Estimator (MLE): Assume a nominal model hi(θ) and given measurements yi, i = 1, . . . , N . The
measurement noises are i.i.d. and Gaussian. What function of θ does the MLE minimize in this case?

(a)
∑N
i=1 |yi − hi(θ)| (b) |

∑N
i=1 yi −

∑N
i=1 hi(θ)|

(c)
∑N
i=1(yi − hi(θ))2 (d)

∑N
i=1

1
σi
|yi − hi(θ)|

12. The PDF of a random variable Y is given by p(y) = 1
2 exp(−|y−θ|), with unknown θ ∈ R. We obtained three measurements,

y(1) = 1, y(2) = 2, and y(3) = 27. What is the minimizer θ∗ of the negative log-likelihood function ?

(a) 1 (b) 2 (c) 10 (d) 27

13. Bayesian estimation: we want to estimate the resistivity ρ of a new material and found in the only existing previous article that
an estimate of ρ is given by 5Ωm with standard deviation 2Ωm. Our own measurement apparatus has Gaussian errors with
standard deviation 4Ωm, and we obtainedN measurements, y(1), . . . , y(N) of ρ. What function is minimized by the Bayesian
Maximum-A-Posteriori (MAP) estimator in this context?

(a) (ρ−5Ωm)2

2Ωm +
∑N
i=1

(y(i)−ρ)2
4Ωm

(b) (ρ−5Ωm)2

(2Ωm)2 +
∑N
i=1

(y(i)−ρ)2
(4Ωm)2

(c) − (ρ−5Ωm)2

2Ωm +
∑N
i=1

(y(i)−ρ)2
4Ωm

(d) (ρ−5Ωm)
2Ωm +

∑N
i=1

(y(i)−ρ)2
4Ωm

14. Modelling a hot iron (Bügeleisen): regard an electrically heated iron with heat capacity C and temperature T (t). Heat losses
to the outside result in an energy flow λ(T (t)− T0) (where λ is a constant and T0 the outside temperature). The electrical coil
provides a heating power Q(t). Regard Q(t) as input and T (t) as output. Which differential equation models this system?

(a) Ṫ = −Cλ (T − T0) + Q
λ

(b) Ṫ = − λ
C (T − T0)− Q

C

(c) Ṫ = λ(T − T0)− Q
C

(d) Ṫ = − λ
C (T − T0) + Q

C

15. Given a one step ahead prediction model y(k) = θ1y(k − 1) + θ2u(k)2 + ε(k) with unknown parameter vector θ =

(θ1, θ2)T , and assuming i.i.d. noise ε(k) with zero mean, and given a sequence of N scalar input and output measurements
u(1), . . . , u(N) and y(1), . . . , y(N), we want to compute the linear least squares (LLS) estimate θ̂ by minimizing a function
f(θ) = ‖yN − ΦNθ‖22. How do we need to choose the matrix ΦN and vector yN?

(a) ΦN =

 y(1) u(1)2

...
...

y(N) u(N)2

 , yN =

 y(1)
...

y(N)

 (b) ΦN =

 y(1) u(2)2

...
...

y(N−1) u(N)2

 , yN =

 y(2)
...

y(N)


(c) ΦN =

 y(2) u(1)
...

...
y(N) u(N−1)

 , yN =

 y(1)
...

y(N−1)

 (d) ΦN =

 y(2) u(2)2

...
...

y(N) u(N)2

 , yN =

 y(2)
...

y(N)


16. Regard the unweighted linear least squares estimate θ̂ minimizing f(θ) = ‖yN − ΦNθ‖22, where the measurements are

generated by yN = ΦNθ0 + εN with θ0 the unknown true value, and εN = (ε(1), . . . , ε(N))> the measurement errors, which
are assumed i.i.d., zero mean, with variance σ2 (but not necessarily Gaussian). What would be the covariance matrix Σθ̂ of θ̂?

(a) (Φ>Nσ
2ΦN )−1 (b) not computable (c) σ(Φ+

N )(Φ+
N )> (d) σ2(Φ>NΦN )−1

17. As above, regard the LLS estimate θ̂ minimizing f(θ) = ‖yN−ΦNθ‖22. But now there might be some correlations between the
measurement errors, and we only know that the vector εN = (ε(1), . . . , ε(N))> has zero mean and the following covariance
matrix ΣεN (not necessarily diagonal). What would be the covariance matrix Σθ̂ of the unweighted LLS estimate θ̂?

(a) not computable (b) (Φ>NΣ−1
εN ΦN )−1 (c) (Φ+

N )ΣεN (Φ+
N )> (d) ΣεN (Φ>NΦN )−1

18. Maximum Likelihood Estimator (MLE) for a coin-toss: we regard a coin thrown into the air that shows either “heads” or
“tails” after landing. We know it is a fraudulent coin, and the unknown probability to get “heads” is θ. In an experiment, we
have thrown the coin 100 times, and obtained 40 times “heads”. What is the negative log likelihood function f(θ) that we need
to minimize in order to obtain the MLE estimate of θ ?

(a) 40 log θ + 60 log(1− θ) (b) 40θ + 60(1− θ)

(c) −40 log θ − 60 log(1− θ) (d) −40θ − 60(1− θ)
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