Modelling and System Identification – Microexam 2

Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg, and ESAT-STADIUS, KU Leuven

December 16, 2014, 8:15-9:00, HS 026, GKA 101, Freiburg

Nachname:	Vorname:	Matrikelnummer:	
Fach:	Studiengang: Ba	chelor Master Lehramt Sons	tiges
Please fill in your name ab	ove and tick exactly one box for the	e right answer of each question below	<i>w</i> .
1. What is the covarian matrices Σ_x, Σ_y ?	nce matrix of $Z = 3X + Y$ if the	e random variables $Y, X \in \mathbb{R}^n$ are	independent and have covarian
(a) $9\Sigma_x^{-1} + \Sigma_x$	Σ_y^{-1} (b) x $9\Sigma_x + \Sigma_y$	(c) (3 $\Sigma_x^{-1} + \Sigma_y^{-1})^{-1}$	(d) $3\Sigma_x + \Sigma_y$
2. What is the covarian $X \in \mathbb{R}^m$?	ice matrix of the random variable Y	Y if $Y = BX$ with $B \in \mathbb{R}^{n \times m}$ fixed	1 and Σ_x the covariance matrix
(a) $B^{\top}\Sigma_x B$	(b) $B\Sigma_x^{-1}B^{\top}$	(c) $\mathbf{X} B\Sigma_x B^{\top}$	(d) $(B\Sigma_x^{-1}B^{\top})^{-1}$
3. Which of the follow	ing dynamic models with inputs $u($	(t) and outputs $y(t)$ is not time varying	ng ?
(a) $\dot{y}(t) = u(t)$)+cos(t) (b) x $\ddot{y}(t) = u(t)^3$	(c) $t^3 \ddot{y}(t) = u(t)$	(d) $\dot{y}(t)^3 = t^2 u(t)$
4. Which of the follow	ing dynamic models with inputs $u($	(t) and outputs $y(t)$ is neither linear	nor affine.
(a) $t^3 \ddot{y}(t) = t^3 \dot{y}(t)$	$u(t)$ (b) $\ddot{y}(t) = t^3 u(t)$	(c) $\dot{y}(t) = u(t) + \cos(t)$	$(\mathbf{d}) \mathbf{x} \dot{y}(t)^3 = u(t)$
5. Which of the follow	ing dynamic models with inputs $u($	(t) and outputs $y(t)$ is a linear time in	wariant (LTI) system ?
(a) $\qquad \ddot{y}(t) = t \cdot$	$u(t)$ (b) $\dot{y}(t) = u(t) + \mathrm{si}$	$\dot{\mathbf{n}}(t) (\mathbf{c}) \mathbf{\bar{x}} \ddot{y}(t) = \frac{1}{3}u(t)$	(d) $\dot{y}(t)^3 = u(t)$
6. Which of the follow	ing models with input $u(k)$ and out	tput $y(k)$ is not linear-in-the-parame	ters w.r.t. $\theta \in \mathbb{R}^2$?
(a) $y(k) = \theta_1$	$u(k)^2 + \theta_2 \sin(u(k))$	(b) $y(k) = \theta_1 y(k-1)$	$+ \theta_2 u(k)$
$(\mathbf{c}) \mathbf{x} y(k) = \theta_1$	$u(k) + \sin(\theta_2 u(k))$	$(\mathbf{d}) \boxed{y(k)} = \sin(y(k-1))$	$(\theta_1 + \theta_2 u(k))$
7. Which transfer funct	tion $G(s)$ describes the system $\dot{x}(t)$	(x = x(t) + u(t), y(t) = x(t) + u(t))	?
(a) $\frac{s}{s+1}$	(b) $\boxed{\mathbf{x}} \frac{s}{s-1}$	(c) $\frac{1}{s+1}$	(d) $\boxed{\frac{s+1}{s+1}}$
8. Which system is des	scribed by the transfer function $G(s)$	$s) = \frac{3}{s^2 - 1}$?	
(a) $\ddot{y} - 3\dot{y} =$		(c) $\ddot{y} + 3\dot{y} = u$	(d) $\ddot{y} - \dot{y} = 3u$
9. What solution $y(t)$ h	has the system $T\dot{y}(t) + y(t) = u(t)$) with initial value $y(0) = -1$ for cons	tant input $u(t)=0$?
(a) \mathbf{x} $y(t) = -\epsilon$	$e^{-t/T}$ (b) $y(t) = e^{-t/T}$	$(\mathbf{c}) \boxed{ y(t) = -e^{-tT}}$	(d) $y(t) = e^{-tT}$
	time equivalent for the system $\dot{y}(t)$ n of zero-order hold for the inputs?	$) = u(t)$ with sampling time $\Delta T =$	2 (time is unitless for simplicit
(a) $y(k+1)$	$=\frac{1}{2}y(k)+u(k)$	(b) $y(k+1) = y(k) +$	-u(k)

$(a) _ g(n+1) = \frac{1}{2}g(n) + a(n)$	$(0) \qquad g(n+1) = g(n) + u(n)$
(c) x $y(k+1) = y(k) + 2u(k)$	(d) $y(k+1) = 2y(k) + 2u(k)$

points on page: 10

11. Maximum Likelihood Estimator (MLE): Assume a nominal model $h_i(\theta)$ and given measurements y_i , i = 1, ..., N. The measurement noises are i.i.d. and Gaussian. What function of θ does the MLE minimize in this case?

(a) $\sum_{i=1}^{N} y_i - h_i(\theta) $	(b) $ \sum_{i=1}^{N} y_i - \sum_{i=1}^{N} h_i(\theta) $
(c) $\mathbf{x} \sum_{i=1}^{N} (y_i - h_i(\theta))^2$	(d) $\sum_{i=1}^{N} \frac{1}{\sigma_i} y_i - h_i(\theta) $

12. The PDF of a random variable Y is given by $p(y) = \frac{1}{2} \exp(-|y-\theta|)$, with unknown $\theta \in \mathbb{R}$. We obtained three measurements, y(1) = 1, y(2) = 2, and y(3) = 27. What is the minimizer θ^* of the negative log-likelihood function ?

(a) 1	(b) x 2	(c) 10	(d) 27

13. Bayesian estimation: we want to estimate the resistivity ρ of a new material and found in the only existing previous article that an estimate of ρ is given by 5 Ω m with standard deviation 2 Ω m. Our own measurement apparatus has Gaussian errors with standard deviation 4 Ω m, and we obtained N measurements, $y(1), \ldots, y(N)$ of ρ . What function is minimized by the Bayesian Maximum-A-Posteriori (MAP) estimator in this context?

(a) $\frac{(\rho-5\Omega\mathrm{m})^2}{2\Omega\mathrm{m}} + \sum_{i=1}^{N} \frac{(y(i)-\rho)^2}{4\Omega\mathrm{m}}$	(b) $\boxed{\mathbf{x}} \frac{(\rho - 5\Omega \mathbf{m})^2}{(2\Omega \mathbf{m})^2} + \sum_{i=1}^{N} \frac{(y(i) - \rho)^2}{(4\Omega \mathbf{m})^2}$
$(c) \Box -\frac{(\rho-5\Omega m)^2}{2\Omega m} + \sum_{i=1}^{N} \frac{(y(i)-\rho)^2}{4\Omega m}$	(d) $\qquad \frac{(\rho-5\Omega\mathrm{m})}{2\Omega\mathrm{m}} + \sum_{i=1}^{N} \frac{(y(i)-\rho)^2}{4\Omega\mathrm{m}}$

14. Modelling a hot iron (Bügeleisen): regard an electrically heated iron with heat capacity C and temperature T(t). Heat losses to the outside result in an energy flow $\lambda(T(t) - T_0)$ (where λ is a constant and T_0 the outside temperature). The electrical coil provides a heating power Q(t). Regard Q(t) as input and T(t) as output. Which differential equation models this system?

(a) $\dot{T} = -\frac{C}{\lambda}(T - T_0) + \frac{Q}{\lambda}$	(b) $\dot{T} = -\frac{\lambda}{C}(T - T_0) - \frac{Q}{C}$
(c) $\dot{T} = \lambda (T - T_0) - \frac{Q}{C}$	(d) \mathbf{x} $\dot{T} = -\frac{\lambda}{C}(T - T_0) + \frac{Q}{C}$

15. Given a one step ahead prediction model $y(k) = \theta_1 y(k-1) + \theta_2 u(k)^2 + \epsilon(k)$ with unknown parameter vector $\theta = (\theta_1, \theta_2)^T$, and assuming i.i.d. noise $\epsilon(k)$ with zero mean, and given a sequence of N scalar input and output measurements $u(1), \ldots, u(N)$ and $y(1), \ldots, y(N)$, we want to compute the linear least squares (LLS) estimate $\hat{\theta}$ by minimizing a function $f(\theta) = ||y_N - \Phi_N \theta||_2^2$. How do we need to choose the matrix Φ_N and vector y_N ?

$\begin{tabular}{ c c c c } \hline (a) \begin{tabular}{c} \Phi_N = \begin{tabular}{c} y(1) \\ \vdots \\ y(N) \end{tabular}$	$\begin{bmatrix} u(1)^2 \\ \vdots \\ u(N)^2 \end{bmatrix}, y_N = \begin{bmatrix} y(1) \\ \vdots \\ y(N) \end{bmatrix}$	(b) $\mathbf{x} \Phi_N =$	$\begin{bmatrix} y(1) & u(2)^2 \\ \vdots & \vdots \\ y(N-1) & u(N)^2 \end{bmatrix}$	$, y_N = \begin{bmatrix} y(2) \\ \vdots \\ y(N) \end{bmatrix}$
$\begin{tabular}{ c c c c } \hline (c) \begin{tabular}{c} \Phi_N = \begin{tabular}{c} y(2) \\ \vdots \\ y(N) \end{tabular}$	$\begin{bmatrix} u(1) \\ \vdots \\ u(N-1) \end{bmatrix}, y_N = \begin{bmatrix} y \\ y \\ y(N-1) \end{bmatrix}$	$ \begin{array}{c} (1) \\ \vdots \\ V-1) \end{array} \right] \left[(d) \boxed{} \Phi_N = \right] $	$\begin{bmatrix} y(2) & u(2)^2 \\ \vdots & \vdots \\ y(N) & u(N)^2 \end{bmatrix},$	$y_N = \begin{bmatrix} y(2) \\ \vdots \\ y(N) \end{bmatrix}$

16. Regard the unweighted linear least squares estimate $\hat{\theta}$ minimizing $f(\theta) = \|y_N - \Phi_N \theta\|_2^2$, where the measurements are generated by $y_N = \Phi_N \theta_0 + \epsilon_N$ with θ_0 the unknown true value, and $\epsilon_N = (\epsilon(1), \dots, \epsilon(N))^{\top}$ the measurement errors, which are assumed i.i.d., zero mean, with variance σ^2 (but not necessarily Gaussian). What would be the covariance matrix $\Sigma_{\hat{\theta}}$ of $\hat{\theta}$?

(a) $(\Phi_N^{\top} \sigma^2 \Phi_N)^{-1}$	(b) not computable	(c) $\sigma(\Phi_N^+)(\Phi_N^+)^\top$	(d) $\mathbf{X} \sigma^2 (\Phi_N^\top \Phi_N)^{-1}$
--	--------------------	---------------------------------------	--

17. As above, regard the LLS estimate $\hat{\theta}$ minimizing $f(\theta) = ||y_N - \Phi_N \theta||_2^2$. But now there might be some correlations between the measurement errors, and we only know that the vector $\epsilon_N = (\epsilon(1), \dots, \epsilon(N))^\top$ has zero mean and the following covariance matrix Σ_{ϵ_N} (not necessarily diagonal). What would be the covariance matrix $\Sigma_{\hat{\theta}}$ of the unweighted LLS estimate $\hat{\theta}$?

(a) not computable	(b) $(\Phi_N^\top \Sigma_{\epsilon_N}^{-1} \Phi_N)^{-1}$	(c) \mathbf{x} $(\Phi_N^+) \Sigma_{\epsilon_N} (\Phi_N^+)^\top$	(d) $\sum \Sigma_{\epsilon_N} (\Phi_N^{\top} \Phi_N)^{-1}$
--------------------	--	---	--

18. Maximum Likelihood Estimator (MLE) for a coin-toss: we regard a coin thrown into the air that shows either "heads" or "tails" after landing. We know it is a fraudulent coin, and the unknown probability to get "heads" is θ . In an experiment, we have thrown the coin 100 times, and obtained 40 times "heads". What is the negative log likelihood function $f(\theta)$ that we need to minimize in order to obtain the MLE estimate of θ ?

(a) 40 log θ + 60 log (1 - θ)	(b) $40\theta + 60(1-\theta)$
$(c) \boxed{\mathbf{x}} -40 \log \theta - 60 \log(1-\theta)$	(d) $-40\theta - 60(1-\theta)$

points on page: 8