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Preface to the Preliminary Manuscript

This lecture manuscript is written to accompany a lecture course on “Modelling and System Identification” given
in the winter term 2014/15 at the University of Freiburg. This script was written by the author with tremen-
dous help by Jesus Lago Garcia during a student job contract, who wrote some sections based on his notes
taken during the lecture and some based on the lecture slides. The script also contains some input by Honghu
Xue and from Robin Verscheuren and Jonas Koenemann, who helped to proofread the text. Some parts and fig-
ures are based on a previous manuscript from the same course a year earlier, which was compiled by Benjamin
Völker, and on the lecture notes from a course on numerical optimization the author has previously taught at the
University of Leuven. The script is far from perfect and surely contains some errors, which can be reported to
moritz.diehl@imtek.uni-freiburg.de.

Some parts of the script are in the color blue in order to indicate that they have not yet been carefully proofread
by the lecturer.

Aim of the manuscript is that it shall serve to the students of the course as a reference for self study and exam
preparation, together with the video lectures, the slides. In addition, we strongly recommend to consult the book
by Lennart Ljung [Lju99] as well as the script by Johan Schoukens [Sch13].

Freiburg, November 2014 -March 2015 Moritz Diehl
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Chapter 1

Introduction

The lecture course on Modelling and System Identification (MSI) has as its aim to enable the students to create
models that help to predict the behaviour of systems. Here, we are particularly interested in dynamic system
models, i.e. systems evolving in time. With good system models, one can not only predict the future (like in
weather forecasting), but also control or optimize the behaviour of a technical system, via feedback control or
smart input design. Having a good model gives us access to powerful engineering tools. This course focuses
on the process to obtain such models. It builds on knowledge from three fields: Systems Theory, Statistics, and
Optimization. We will recall necessary concepts from these three fields on demand during the course. For a
motivation for the importance of statistics in system identification, we first look at a very simple example taken
from the excellent lecture notes of J. Schoukens [Sch13]. The course will then first focus on identification methods
for static models and their statistical properties, and review the necessary concepts from statistics and optimization
where needed. Later, we will look at different ways to model dynamic systems and how to identify them. For a
much more detailed and complete treatment of system identification, we refer to the textbook by L. Ljung [Lju99].

1.1 Mathematical Notation
Within this lecture we use R for the set of real numbers, R+ for the non-negative ones and R++ for the positive
ones, Z for the set of integers, and N for the set of natural numbers including zero, i.e. we identify N = Z+. The
set of real-valued vectors of dimension n is denoted by Rn, and Rn×m denotes the set of matrices with n rows and
m columns. By default, all vectors are assumed to be column vectors, i.e. we identify Rn = Rn×1. We usually use
square brackets when presenting vectors and matrices elementwise. Because will often deal with concatenations of
several vectors, say x ∈ Rn and y ∈ Rm, yielding a vector in Rn+m, we abbreviate this concatenation sometimes
as (x, y) in the text, instead of the correct but more clumsy equivalent notations [x>, y>]> or[

x
y

]
.

Square and round brackets are also used in a very different context, namely for intervals in R, where for two real
numbers a < b the expression [a, b] ⊂ R denotes the closed interval containing both boundaries a and b, while an
open boundary is denoted by a round bracket, e.g. (a, b) denotes the open interval and [a, b) the half open interval
containing a but not b.

When dealing with norms of vectors x ∈ Rn, we denote by ‖x‖ an arbitrary norm, and by ‖x‖2 the Euclidean
norm, i.e. we have ‖x‖22 = x>x. We denote a weighted Euclidean norm with a positive definite weighting matrix
Q ∈ Rn×n by ‖x‖Q, i.e. we have ‖x‖2Q = x>Qx. The L1 and L∞ norms are defined by ‖x‖1 =

∑n
i=1 |xi|

and ‖x‖∞ = max{|x1|, . . . , |xn|}. Matrix norms are the induced operator norms, if not stated otherwise, and the
Frobenius norm ‖A‖F of a matrix A ∈ Rn×m is defined by ‖A‖2F = trace(AA>) =

∑n
i=1

∑m
j=1AijAij .

When we deal with derivatives of functions f with several real inputs and several real outputs, i.e. functions
f : Rn → Rm, x 7→ f(x), we define the Jacobian matrix ∂f

∂x (x) as a matrix in Rm×n, following standard
conventions. For scalar functions with m = 1, we denote the gradient vector as ∇f(x) ∈ Rn, a column vector,
also following standard conventions. Slightly less standard, we generalize the gradient symbol to all functions
f : Rn → Rm even with m > 1, i.e. we generally define in this lecture

∇f(x) =
∂f

∂x
(x)> ∈ Rn×m.

7
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8 CHAPTER 1. INTRODUCTION

Using this notation, the first order Taylor series is e.g. written as

f(x) = f(x̄) +∇f(x̄)>(x− x̄)) + o(‖x− x̄‖)

The second derivative, or Hessian matrix will only be defined for scalar functions f : Rn → R and be denoted by
∇2f(x).

For square symmetric matrices of dimension n we sometimes use the symbol Sn, i.e. Sn = {A ∈ Rn×n|A =
A>}. For any symmetric matrixA ∈ Sn we writeA<0 if it is a positive semi-definite matrix, i.e. all its eigenvalues
are larger or equal to zero, and A�0 if it is positive definite, i.e. all its eigenvalues are positive. This notation is
also used for matrix inequalities that allow us to compare two symmetric matrices A,B ∈ Sn, where we define
for example A<B by A−B<0.

When using logical symbols, A⇒ B is used when a propositionA implies a propositionB. In words the same
is expressed by “If A then B”. We write A⇔ B for “A if and only if B”, and we sometimes shorten this to “A iff
B”, with a double “f”, following standard practice.

A remark is in order about how we refer to the components of a vector, say x ∈ Rn. Here, we sometimes
use the standard convention, i.e. refer to the components by x1, x2, . . . , xn, i.e. have x = [x1, x2, . . . , xn]>. But
sometimes, in particular if the components of the vector represent a series of measurements or a sequence of other
quantities, we use round brackets to refer to its components (as in the script [Sch13] and the book [Lju99]), i.e.
we write x(1), x(2), . . . , x(n). Sometimes we want to express that the length of the whole vector increases with
time, and we give an index to the whole vector, i.e. we write xn ∈ Rn, which conflicts with the notation for a
single component. In order to avoid confusion with the single components, we usually indicate the dimension of
the respective vectors. In particular for the vector that contains all measurements taken until time point N , we
use the notation y(1), . . . , y(N) for the components, and yN = [y(1), . . . , y(N)]> for the whole sequence, to be
consistent with the notation in most of the system identification literature.

We usually use the “hat” above some estimated quantities, e.g. R̂ in order to denote that they are estimates of
R rather than the true value, which we sometimes denote by the same variable name but an index zero, i.e. R0 is
the true value of R. If the estimate depends on a series of samples, we often give it also an index. e.g. R̂(N) is the
estimate of R given the first N measurements.

1.2 A Simple Example: Resistance Estimation
To motivate the need to think about statistical properties, we start with a simple example taken from [Sch13]. Aim
is to estimate the resistance of a resistor based on measurements of current and voltage, see Fig. 1.1. In order to
increase the accuracy of our estimate, we repeat the same experiment many times, where we measure each time
current i(k) and voltage u(k). Due to measurement noise, all these values will be different, see Fig. 1.2.CHAPTER 1. AN INTRODUCTION TO IDENTIFICATION

Figure 1.1: Measurement of a resistor.
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Figure 1.2: Measurement results u(k), i(k) for groups A and B.
The plotted value R(k) is obtained by direct division of the voltage by the
current: R(k) = u(k)/i(k).

The index N indicates that the estimate is based on N observations. Note

that the three estimators result in the same estimate on noiseless data. Both

groups processed their measurements and their results are given in Figure 1.3.

From this figure a number of interesting observations can be made:

10

Figure 1.1: Resistance estimation example with resistorR , current measurements i(k), and voltage measurements
u(k) for k = 1, 2, ...., N. [Sch13]

Another way to look at the same series of measurements would be the voltage-current diagram in Fig. 1.3. In
a perfect world without noise, we would expect all measurements to be at the same point, but in reality they are
spread out.

We know by Ohm’s law that u = Ri. For a single measurement, u(1) and i(1), we would clearly have
R̂(1) = u(1)

i(1) . We would expect that taking many measurements should help us to reduce the effect of noise and
improve our estimates. But given a series of measurements u(k) and i(k), how should we compute an estimate
R̂(N) for the unknown resistance? Let us look at three different approaches, which we will denote by names that
are partly ad-hoc and partly motivated by later considerations.
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1.2. A SIMPLE EXAMPLE: RESISTANCE ESTIMATION 9
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Figure 1.2: The measurements are a time series of discrete noisy values.
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Figure 1.3: The same measurements in a voltage-current diagram.

1.2.1 Simple Approach

A first simple approach is to compute the average of the resistance estimates one would obtain for each experiment.

R̂SA(N) =
1

N
·
N∑
k=1

u(k)

i(k)
(1.1)

We can take a long sequence of measurements, and apply this formula each time. The resulting sequence of
numbers R̂SA(N) is shown as a function of N in the curve in Fig. 1.4 at the top. It seems to converge for large N .
But does it converge to the right value?

CHAPTER 1. AN INTRODUCTION TO IDENTIFICATION
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Figure 1.3: Estimated resistance values R̂(N) for both groups as a function of
the number of processed data N .

Full dotted line: R̂SA, dotted line: R̂LS, full line: R̂EV.

• All estimators have large variations for small values of N , and seem to

converge to an asymptotic value for large values of N , except R̂SA(N) of

group A. This corresponds to the intuitively expected behavior: if a large

number of data points are processed we should be able to eliminate the

noise influence due to the averaging effect.

• The asymptotic values of the estimators depend on the kind of averaging

technique that is used. This shows that there is a serious problem: at least

2 out of the 3 methods converge to a wrong value. It is not even certain

that any one of the estimators is doing well. This is quite catastrophic:

even an infinite amount of measurements does not guarantee that the

exact value is found.

• The R̂SA(N) of group A behaves very strangely. Instead of converging

to a fixed value, it jumps irregularly up and down before convergence is

reached.

These observations prove very clearly that a good theory is needed to explain

and understand the behavior of candidate estimators. This will allows us to

make a sound selection out of many possibilities and to indicate in advance,

11

Figure 1.4: Different estimations of R for increasing sample size N . At least two of the estimators are wrong. But
which estimator gives us the true value of R when N goes to infinity ?
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10 CHAPTER 1. INTRODUCTION

1.2.2 Error-in-Variables
A different approach to reduce the noise would be to first take the average of all voltage measurements and of all
current measurements, and then divide the two averages. This gives the following formula that we call “error-in-
variables” because it will correspond to an estimator with this name that we investigate later.

R̂EV(N) =
1
N

∑N
k=1 u(k)

1
N

∑N
k=1 i(k)

(1.2)

The corresponding sequence of numbers R̂EV(N) is shown in Fig. 1.4 in the middle for the same measurements
as before. Unfortunately, the two approaches give different results, and the curve does not converge to the same
value as the previous approach.

1.2.3 Least Squares
A third approach uses the method of least squares. Idea is to find R by minimizing the sum of the squared
differences between the model predictions for the voltage based on the measurement i(k), i.e. Ri(k), and the
measurement of the voltage, u(k), see Fig. 1.5. The defining formula is thus given by the following expression.

R̂LS(N) = arg min
R∈R

N∑
k=1

(R · i(k)− u(k))2 (1.3)

=
1
N

∑N
k=1 u(k) · i(k)

1
N

∑N
k=1 i(k)2

(1.4)

Here, the second line is obtained by differentiating the function to be optimized, i.e. f(R) =
∑N
k=1(R · i(k) −

u(k))2, and setting the derivative to zero, ∂f
∂R (R∗) = 0, and resolving this equation to get the minimizer R∗

(deriving the formula is left as an easy exercise to the reader). The least squares approach is very powerful, in
particular when we deal with more than one unknown parameter, and is very often used in this lecture.

The sequence of numbers R̂LS(N) resulting from the method of least squares is shown in Fig. 1.4 in the lowest
graph. The values seem to converge to a fixed value, but they converge to a different value than the two previous
approaches. We still do not know which of the three might be true value of R, unfortunately.
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Figure 1.5: Principle behind the Least Squares approach: minimize the squared differences between u(k) and
Ri(k).

In order to resolve the problem to decide which of the three estimators gives the correct value (or if they are all
three wrong) we need to look into the statistical properties of estimators. These are based on probability theory,
which we treat in the next chapter.
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Chapter 2

Probability and Statistics in a Nutshell

In this chapter we review concepts from the fields of mathematical statistics and probability that we will need often
in this course.

2.1 Random Variables and Probabilities
Random variables are used to describe the possible outcomes of experiments. Random variables are slightly
different than the usual mathematical variables, because a random variable does not yet have a value. A random
variable X can take values from a given set, typically the real numbers. A specific value x ∈ R of the random
variableX will typically be denoted by a lower case letter, while the random variable itself will usually be denoted
by an upper case letter; we will mostly, but not always stick to this convention. Note that the random variable
X itself is not a real number, but just takes values in R. Nevertheless, we sometimes write sloppily X ∈ R, or
Y ∈ Rn to quickly indicate that a random variable takes scalars or vectors as values.

The probability that a certain event A occurs is denoted by P (A), and P (A) is a real number in the interval
[0, 1]. The event A is typically defined by a condition that a random variable can satisfy or not. For example, the
probability that the value of a random variable X is larger than a fixed number a is denoted by P (X > a). If the
event contains all possible outcomes of the underlying random variable X , its probability is one. If two events A
and B are mutually exclusive, i.e. are never true at the same time, the probability that one or the other occurs is
given by the sum of the two probabilities: P (A ∨B) = P (A) + P (B). Two events can also be independent from
each other. In that case, the probability that they both occur is given by the product: P (A ∧ B) = P (A)P (B). If
this is not the case, the two events are called dependent. We will often also write P (A,B) for the joint probabily
P (A ∧ B). One can define the conditional probability P (A|B) that an event A occurs given that event B has
already occured. It is easy to verify the identity

P (A|B) =
P (A,B)

P (B)
.

An immediate consequence of this identity is

P (A|B) =
P (B|A)P (A)

P (B)
.

which is known as Bayes Theorem after Thomas Bayes (1701-1761), who investigated how new evidence (eventB
has occured) can update prior beliefs - the a-priori probability P (A) - in order to obtain the a-posteriori conditional
probability of A given B.

2.2 Scalar Random Variables and Probability Density Functions
For a real valued random variable X , one can define the Probability Density Function (PDF) pX(x) which de-
scribes the behaviour of the random variable, and which is a function from the real numbers to the real numbers,
i.e. pX : R → R, x 7→ pX(x). Note that we use the name of the underlying random variable (here X) as index,

11
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12 CHAPTER 2. PROBABILITY AND STATISTICS IN A NUTSHELL

when needed, and that the input argument x of the PDF is just a real number. We will sometimes drop the index
when the underlying random variable is clear from the context.

The PDF pX(x) is related to the probability that X takes values in any interval [a, b] in the following way:

P (X ∈ [a, b]) =

∫ b

a

pX(x) dx

Conversely, one can define the the PDF as

pX(x) = lim
∆x→0

P (X ∈ [x, x+ ∆x])

∆x

Two random variables X,Y are independent if the joint PDF pX,Y (x, y) is the product of the individual PDFs, i.e.
pX,Y (x, y) = pX(x)pY (y), otherwise they are dependent. The conditional PDF pX|Y of X for given Y is defined
by

pX|Y (x|y) =
pX,Y (x, y)

pY (y)
.

As the above notation can become very cumbersome, we will occasionally also omit the index of the PDF and for
example just express the above identity as

p(x|y) =
p(x, y)

p(y)
.

2.2.1 Mean and Variance
The expectation value or mean of a random variable is often denoted by µX and computed as

∫∞
−∞ x pX(x)dx.

More generally, one can compute the expectation of any function f(X) of a random variable, which is by itself a
random variable. It is convenient to introduce the expectation operator E{·}, which is defined by

E{f(X)} :=

∫ ∞
−∞

f(x) pX(x)dx.

Due to the linearity of the integral, the expectation operator is also linear. This means that for any affine function
f(X) = a+ bX with fixed numbers a, b ∈ R, we have that

E{a+ bX} = a+ b E{X}.
Note that this is not possible for nonlinear functions f(X), i.e. in general E{f(X)} 6= f(E{X}).

The variance of a random variable X is a measure of how much the variable varies around the mean and is
denoted by σ2

X . It is defined as
σ2
X := E{(X − µX)2}.

The square root of the variance, σX =
√
σ2
X , is called the standard deviation.

2.2.2 Simple Example: Uniform Distribution
One simple example for a PDF is the uniform distribution of on an interval [a, b] ⊂ R with a < b. Here, the PDF
of the random variable X is defined as

pX(x) =

{
1
b−a if x ∈ [a, b]

0 else

It is easy to check that
∫∞
−∞ pX(x)dx = 1. The mean is given by∫ ∞
−∞

pX(x)xdx =

∫ b

a

1

b− a xdx =
b2 − a2

2(b− a)
=
a+ b

2
=: µX .

The variance σ2
X is given by ∫ ∞

−∞
pX(x) (x− µX)2 dx =

∫ b

a

1

b− a (x− µX)2 dx.

By a change of variables, y = x− µX and using the shorthand c = b− a one obtains

σ2
X =

1

c

∫ c/2

−c/2
y2 dy =

1

c

[
1

3

( c
2

)3

− 1

3

(
− c

2

)3
]

=
c2

12
=

(b− a)2

12
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2.2.3 The Normal Distribution
An important PDF in many applications is given by the normal distribution. A random variable X is called
Gaussian or normally distributed, if its PDF is given by

p(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
.

Here, the two numbers µ ∈ R and σ > 0 are numbers that characterize the distribution. One can again show by
integration that this PDF is normed, i.e.

∫∞
−∞ pX(x)dx = 1. Also, one can compute its mean µX and variance

σ2
X , which turn out to be given exactly by the parameters µ and σ2. For this reason, one denotes the above PDF

as a normal distribution with mean µ and variance σ2. To express this fact in a compact way, one also writes
X ∼ N (µ, σ2), where the calligraphic N stands for “normal”. The normal distribution is also called “Gaussian
distribution” due to the fact that it was discovered by Carl Friedrich Gauss (17771855), a German mathematician
who contributed to a variety of fields, including statistics.

2.3 Multidimensional Random Variables
When we regard two random variables Y ∈ R and Z ∈ R, one could also form the vector X = [Y,Z]> ∈ R2.
The random variable is now characterized by the joint PDF pY,Z(y, z) = pX(x). More generally, we can regard a
random vector X ∈ Rn. The expectation of any function f : Rn → Rm of X can then be computed by

E{f(X)} =

∫
Rn
f(x) pX(x) dnx.

2.3.1 Mean and Covariance Matrix
The expectation operator can also be applied to vector valued random variables, where the expectation is just
computed for each component separately. We denote the mean of a random vector X by µX = E{X}. Note
that µX is a vector of the same dimension as X . We generalize the variance to the so-called covariance matrix
ΣX ∈ Rn×n, which contains all variances and covariances in a single matrix. It is given by ΣX = cov(X) where
the covariance operator is defined by

cov(X) = E{(X − µX)(X − µX)>}.
It is easy to verify the identity cov(X) = E{XX>} − µXµ>X .

2.3.2 Multidimensional Normal Distribution
We say that a vector valued random variable X is normally distributed with mean µ and covariance Σ if its PDF
p(x) is given by a multidimensional Gaussian as follows

p(x) =
1√

det(2πΣ)
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
As a shorthand, one also writes X ∼ N (µ,Σ) to express that X follows a normal distribution with mean µ and
covariance Σ . One can verify by integral computations that indeed E{X} = µ and cov(X) = Σ.

2.4 Statistical Estimators
An estimator uses possibly many measurements in order to estimate the value of some parameter vector that we
typically denote by θ in this script. The parameter is not random, but its true value, θ0, is not known to the estimator.
If we group all the measurements in a vector valued random variable YN ∈ RN , the estimator is a function of YN .
We can denote this function by θ̂N (YN ). Due to its dependence on YN , the estimate θ̂N (YN ) is itself a random
variable, for which we can define mean and covariance. Ideally, the expectation value of the estimator is equal to
the true parameter value θ0. We then say that the estimator is unbiased.

Definition 1 (Biased- and Unbiasedness) An estimator θ̂N is called unbiased iff E{θ̂N (YN )} = θ0, where θ0 is
the true value of a parameter. Otherwise, it is called biased.
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Example for unbiasedness: estimating the mean by an average One of the simplest estimators tries to estimate
the mean θ ≡ µY of a scalar random variable Y by averaging N measurements of Y . Each of these measurements
Y (k) is random, and overall the random vector YN is given by YN = [Y (1), . . . , Y (N)]>. The estimator θ̂N (YN )
is given by

θ̂N (YN ) =
1

N
ΣNk=1Y (k).

It is easy to verify that this estimator is unbiased, because

E{θ̂N (YN )} =
1

N
ΣNk=1E{Y (k)} =

1

N
ΣNk=1µY = µY

Because this estimator is often used it has a special name. It is called the sample mean.

In order to assess the performance of an unbiased estimator, one can regard the covariance matrix of the
estimates, i.e.

cov(θ̂N (YN ))

The smaller this symmetric positive semi-definite matrix, the better the estimator. If two estimators θ̂A and θ̂B

are both unbiased, and if the matrix inequality cov(θ̂A)<cov(θ̂B) holds, we can conclude that the estimator θ̂B

has a better performance than estimator θ̂A. Typically, the covariance of an estimator becomes smaller when an
increasing number N of measurements is used. Often the covariance even tends to zero as N →∞.

Some estimators are not unbiased, but if N tends to infinity, their bias – i.e. the difference between true value
and the mean of the estimate – tends to zero.

Definition 2 (Asymptotic Unbiasedness) An estimator θ̂N is called asymptotically unbiased iff

lim
N→∞

E{θ̂N (YN )} = θ0.

Example for asymptotically unbiasedness: estimating the variance by the mean squared deviations One
of the simplest biased, but asymptotically unbiased estimators is tries to estimate the variance θ ≡ σ2

Y of a scalar
random variable Y by taking N measurements of Y , computing the experimental mean M(YN ) = 1

NΣNk=1Y (k),
and then averaging the squared deviations from the mean

θ̂N (YN ) =
1

N
ΣNk=1(Y (k)−M(YN ))2

To show that it is biased, one has to consider that the sample mean M(YN ) is a random variable that is not
independent from YN . One can compute its expectation value, which after some algebra is evaluated to be

E{θ̂N} =
N − 1

N
σ2
Y .

Only for N →∞, this estimator tends to the true value, so it is indeed asymptotically unbiased.

Because the bias is very easy to correct, in practice one rarely uses the above formula. Instead, to estimate the
variance of a random variable Y , one uses the so called sample variance S2 that is defined by

S2 =
1

N − 1
ΣNn=1(Y (n)−M(YN ))2.

Note the division by N − 1 instead of N .
A stronger and even more desirable property than asymptotic unbiasedness is called consistency.

Definition 3 (Consistency) An estimator θ̂N (YN ) is called consistent if, for any ε > 0, the probabilityP (θ̂N (YN ) ∈
[θ0 − ε, θ0 + ε]) tends to one as N →∞.

It can be shown that an estimator is consistent if (a) it is asymptotically unbiased and (b) its covariance tends to
zero as N → 0.
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2.5 Analysis of the Resistance Estimation Example

In the previous chapter, we introduced the Resistance Estimation Exampl where we used three different ways to
generate an estimator: the so-called ”Simple approach” represented by Equation (2.1), the ”Error in Variables”
estimator represented by Equation (2.2) and finally the ”Least Squares” estimator represented by Equation (2.3).

R̂SA(N) =
1

N
·
N∑
k=1

u(k)

i(k)
(2.1)

R̂EV(N) =
1
N

∑N
k=1 u(k)

1
N

∑N
k=1 i(k)

(2.2)

R̂LS(N) = arg min
R∈R

N∑
k=1

(R · i(k)− u(k))2 =
1
N

∑N
k=1 u(k) · i(k)

1
N

∑N
k=1 i(k)2

(2.3)

The aim of this section is to analyse each of the estimators and in particular, because this is easiest to analyze,
to find out if they are asymptotically unbiased or not. In order to perform this analysis, we need to make some
assumptions on the origin of the measurement errors, i.e. we analyse a model situation where one assumes to know
the true value and the noise properties. We model the voltage u(k) and the current i(k) at time k as the true value
of the voltage u0 and current i0, plus a zero mean i.i.d. noise nu(k) and ni(k). This means that we write

u(k) = u0 + nu(k)

i(k) = i0 + ni(k).
(2.4)

Of course, the quotient of the true values u0 and i0 is the true value of the resistance, i.e. R0 = u0

i0
.

We also, make some assumptions on the disturbing noise, namely that ni(k) and nu(k) are independent from
each other and are each independent identically distributed (i.i.d.), have symmetric distributions with zero mean,
and have the (finite) variances σ2

i and σ2
u.

In order to analyze the estimators, we need to make use of a result that is intuitively easy to accept, while a
rigorous treatment would be involved. The result regards an infinite sequence of measurements y(k) of a random
variable Y and states that

lim
N→∞

1

N

N∑
k=1

y(k) = E{Y }.

This implies for example that

lim
N→∞

1

N

N∑
k=1

u(k) = u0.

Because the noises are zero mean, symmetrically distributed and independent, also their product has zero expecta-
tion, i.e.

lim
N→∞

1

N

N∑
k=1

ni(k)nu(k) = 0.

However, the limit of their squares is non-zero, because the mean of their squares is given by the variance. For
example,

lim
N→∞

1

N

N∑
k=1

ni(k)ni(k) = σ2
i .

In the following, we regard the three estimators in a different order than before, because the analysis of the
simple approach is more involved than the one of the other two, and is therefore postponed to the end of the section.
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2.5.1 Error in Variables estimator
Let us first look at the “error in variables” estimator:

R̂EV(N) =
1
N

∑N
k=1 u(k)

1
N

∑N
k=1 i(k)

(2.5)

Let us now calculate the limit of R̂EV(N) for N →∞, as follows.

lim
N→∞

R̂EV(N) = lim
N→∞

{ 1
N

∑N
k=1 u(k)

1
N

∑N
k=1 i(k)

}
=

limN→∞{ 1
N

∑N
k=1(u0 + nu(k))}

limN→∞{ 1
N

∑N
k=1(i0 + ni(k))}

=
u0 + limN→∞{ 1

N

∑N
k=1 nu(k)}

i0 + limN→∞{ 1
N

∑N
k=1 +ni(k)}

=
u0

i0
= R0

(2.6)

We can conclude from this result that the Error in Variables estimator is asymptotically unbiased.

2.5.2 Least Squares estimator
Assuming the same properties for the measurements u(k) and i(k) as before, the Least Squares estimator can be
analysed as follows. We start by separating true values and noise in the formula.

R̂LS(N) =
1
N

∑N
k=1 u(k) · i(k)

1
N

∑N
k=1 i(k)2

=
1
N

∑N
k=1(u0 + nu(k)) · (i0 + ni(k))

1
N

∑N
k=1(i0 + ni(k))2

. (2.7)

Now, following the same procedure as before, we can calculate the limit when N →∞ for the numerator and
denominator separately.

• Numerator

lim
N→∞

1

N

N∑
k=1

(u0 + nu(k)) · (i0 + ni(k))

= lim
N→∞

1

N

N∑
k=1

u0 · i0 + lim
N→∞

1

N

N∑
k=1

i0 · nu(k)+

+ lim
N→∞

1

N

N∑
k=1

u0 · ni(k) + lim
N→∞

1

N

N∑
k=1

ni(k) · nu(k))

= u0 · i0

(2.8)

The last line follows since nu(k), ni(k) are zero mean noises, and because limN→∞
1
N

∑N
k=1 nu(k), ni(k) =

0

• Denominator

lim
N→∞

1

N

N∑
k=1

(i0 + ni(k))2

= lim
N→∞

1

N

N∑
k=1

i0
2 + lim

N→∞

1

N

N∑
k=1

2 · i0 · ni(k) + lim
N→∞

1

N

N∑
k=1

ni(k)
2

= i0
2 + σ2

i

(2.9)
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The last line follows since limN→∞
1
N

∑N
k=1(ni(k))2 = σ2

i . As a result, the limit of the expected value of
R̂LS(N) is not the real value R0, but instead:

lim
N→∞

E{R̂LS(N)} =
u0i0
i20 + σ2

i

=
R0

1 +
σ2
i

i20

(2.10)

This means that the estimated value is always lower than the real value, making this estimator a biased
estimator. It is interesting to note that the size of the bias depends only on size of the noise on the current
measurements relative to the true current, but not on the size of the noise of the voltage measurements. This
is a general property of least squares estimators where the noise on the regression variable (here: the current)
has an influence on the bias.

2.5.3 Simple Approach
Finally we take a look to the Simple Approach estimator defined by:

R̂SA(N) =
1

N
·
N∑
k=1

u(k)

i(k)
(2.11)

Using the same assumptions as before we could already conclude that limN→∞R̂SA(N) might not even converge,
since i(k) can take zero values, and R̂SA(N) would be an average of numbers, some of which take the value of
infinity.

In spite of this fact, we can still try to find an approximate value for the expected value, assuming that no i(k)
would take the value of zero. For this aim, let us first expand the denominator using a Taylor series:

1

i(k)
=

1

i0 ·
(

1 + ni(k)
i0

) ≈ 1

i0
·
(

1− ni(k)

i0
+

(
ni(k)

i0

)2

−
(
ni(k)

i0

)3

+ . . .

)
(2.12)

Though this series might not converge for noise values that are too large, we can use it to analyse the estimator
under optimistic assumptions, namely under the assumption that all noise terms are small enought that the series
converges. If we find a bias even under these optimistic assumptions, we can conclude that the overall estimator is
biased as well. Let us continue as follows:

lim
N→∞

1

N

N∑
k=1

R̂SA(N)

= lim
N→∞

1

N

N∑
k=1

{
u0 + nu(k)

i0
·
(

1− ni(k)

i0
+

(
ni(k)

i0

)2

−
(
ni(k)

i0

)3

+ . . .

)}

=

{
u0

i0
lim
N→∞

1

N

N∑
k=1

(
1 +

nu(k)

u0
− ni(k)

i0
− ni(k) · nu(k)

i0 · u0
+
ni(k)2

i20
+ . . .

)}
≈ u0

i0
·
(

1 +
σ2
i

i20

)
(2.13)

Therefore, even when every i(k) 6= 0, the estimator would be biased. In this case, in contrast to the least
squares estimator, the biased value is higher than the true value.

2.5.4 Discussing the results
When we first looked at the graph in Fig. 1.4, it was not possible to state which was the real value, and which of
the estimators were biased. Now, with the analysis done in the previous section, it is pretty obvious that only the
error in variables estimator R̂EV(N) converges to the true value of the resistance for high values of N , due to the
fact that it is the only asymptotically unbiased estimator. In the case of the least squares estimator we can check
that the theoretical analysis matches the graph: the least squares estimator produces a value smaller than the true
one. Finally, in the case of the simple approach, we observed that it might not even converge. But if it does, the
value that it estimates is higher than the real one. All this can be seen in the graphs in Fig. 1.4.
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Chapter 3

Linear Least Squares Estimation

Linear least squares (LLS or just LS) is a technique that helps us to find a model that is linear in some unknown pa-
rameters θ ∈ Rd . For this aim, we regard a sequence of measurements y(1), . . . , y(N) ∈ R that shall be explained
– they are also called the dependent variables – and another sequence of regression vectors φ(1), . . . , φ(N) ∈ Rd,
which are regarded as the inputs of the model and are also called the independent or explanatory variables. Pre-
diction errors are modelled by additive measurement noise ε(1), . . . , ε(N) with zero mean such that the overall
model is given by

y(k) = φ(k)>θ + ε(k), for k = 1, . . . , N.

Let us in this section regard only scalar measurements y(k), though LLS can be generalized easily to the case of
several dependent variables. The task of LLS is to find an estimate θ̂LS for the true but unknown parameter vector
θ0. Often the ultimate aim is to be able to predict a y for any given new values of the regression vector φ by the
model y = φ>θ̂LS.

3.1 Least Squares Problem Formulation
Idea of linear least squares is to find the θ that minimizes the sum of the squares of the prediction errors y(k) −
φ(k)>θ, i.e. the least squares cost function

N∑
k=1

(
y(k)− φ(k)>θ

)2
.

Stacking all values y(k) into one long vector yN ∈ RN and all regression vectors as rows into one matrix ΦN ∈
RN×d, i.e.,

yN =

 y(1)
...

y(N)

 and ΦN =

 φ(1)>

...
φ(N)>


we can write the least squares cost function1 as

f(θ) = ‖yN − ΦNθ‖22.

The least squares estimate θ̂LS is the value of θ that minimizes this function. Thus, we are faced with an uncon-
strained optimization problem that can be written as

min
θ∈Rd

f(θ).

In estimation, we are mainly interested in the input arguments of f that achieve the minimal value, which we call
the minimizers. The set of minimizers S∗ is denoted by

S∗ = arg min
θ∈Rd

f(θ).

1We recall that for any vector x ∈ Rn, we define the Euclidean norm as ‖x‖2 =
(∑n

i=1 x2
i

)1/2
= (x>x)1/2.

19
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Note that there can be several minimizers. If the minimizer is unique, we have only one value in the set, that we
denote θ∗, and we can slightly sloppily identify θ∗ with {θ∗}. The least squares estimator θ̂LS is given by this
unique minimizer, such that we will often write

θ̂LS = arg min
θ∈Rd

f(θ).

But in order to compute the minimizer (or the set of minimizers), we need to solve an optimization problem. Let
us therefore recall a few concepts from optimization, and then give an explicit solution formula for θ̂LS.

3.2 A Micro-Review of Unconstrained Optimization
Let us in this section use, as customary in optimization textbooks, the variable x ∈ Rn instead of θ ∈ Rd
as the unknown decision variable in the optimization problem. Throughout the course, we often want to solve
unconstrained optimization problems of the form

min
x∈D

f(x), (3.1)

where we regard objective functions f : D → R that are defined on some open domain D ⊂ Rn. We are only
interested in minimizers that lie inside of D. We might have D = Rn, but often this is not the case, e.g. as in the
following example:

min
x∈(0,∞)

1

x
+ x. (3.2)

Let us state a few simple and well-known results from unconstrained optimization that are often used in this course.

Theorem 1 (First Order Necessary Conditions) If x∗ ∈ D is local minimizer of f : D → R and f ∈ C1 then

∇f(x∗) = 0. (3.3)

Definition 4 (Stationary Point) A point x̄ with∇f(x̄) = 0 is called a stationary point of f .

Given the above theorem, stationarity is a necessary, but of course not a suffcient condition for optimality. There
is one surprisingly large class of functions f(x), however, for which stationarity is both necessary and sufficent for
global optimality: the class of convex functions.

Theorem 2 (Convex First Order Sufficient Conditions) Assume that f : D → R is C1 and convex. If x∗ ∈ D
is a stationary point of f , then x∗ is a global minimizer of f .

We will extensively make use of this theorem, because many of the optimization problems formulated in system
identification are convex. An important convex objective function is the least squares cost function f(x) = ‖y −
Φx‖22 that is the subject of this chapter. For general nonlinear cost functions f(x), however, we need to look at
second order derivatives in order to decide if a stationary point is a minimizer or not. There exist necessary and
sufficient conditions that are straightforward generalizations of well-known results one dimensional analysis to
Rn.

Theorem 3 (Second Order Necessary Conditions) If x∗ ∈ D is local minimizer of f : D → R and f ∈ C2

then
∇2f(x∗)<0. (3.4)

Note that the matrix inequality is identical with the statement that all eigenvalues of the Hessian∇2f(x∗) must be
non-negative. It is possible that the Hessian has one or more zero eigenvalues – whose eigenvectors corresponds to
directions of zero-curvature in the cost function. Due to this fact, the second order necessary condition (3.4) is not
sufficient for a stationary point x∗ to be a minimizer. This is illustrated by the simple one-dimensional functions
f(x) = x3 or f(x) = −x4 for which x∗ = 0 is a saddle point and a maximizer, respectively, though for both
the necessary conditions ∇f(x∗) = 0 and ∇2f(x∗)<0 are satisfied. How can we obtain a sufficient optimality
condition for general nonlinear, but smooth functions f?
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Theorem 4 (Second Order Sufficient Conditions and Stability under Perturbations) Assume that f : D →
R is C2. If x∗ ∈ D is a stationary point and

∇2f(x∗)�0. (3.5)

then x∗ is a strict local minimizer of f . In addition, this minimizer is locally unique and is stable against small
perturbations of f , i.e.there exists a constant C such that for sufficiently small p ∈ Rn holds

‖x∗ − arg min
x

(f(x)+p>x)‖ ≤ C‖p‖.

3.3 Solution of the Linear Least Squares Problem
The function f(θ) = 1

2 ‖ yN−ΦNθ ‖22 is convex. Therefore local minimizers are found by just setting the gradient
to zero. For notational convenience, we will in this section omit the subindex N and write f(θ) = 1

2 ‖ y −Φθ ‖22,
and we will refer to the components of y with a simple subindex, i.e. write yk instead of y(k). Also, we have
introduced a factor 1

2 in the objective, which does not change the minimizer. We introduced it because it will
cancel a factor two that would otherwise be present in the first and second derivatives of f . To find the minimizer,
let us compute the gradient of f .

∇f(θ∗) = 0 ⇔ Φ>Φθ∗ − Φ>y = 0

⇔ θ∗ = (Φ>Φ)−1Φ>︸ ︷︷ ︸
=Φ+

y (3.6)

Definition 5 (Pseudo inverse) Φ+ is called the pseudo inverse of the matrix Φ and is a generalization of the
inverse matrix. If Φ>Φ � 0, the pseudo inverse Φ+ is given by

Φ+ = (Φ>Φ)−1Φ> (3.7)

So far, (Φ>Φ)−1 is only defined when Φ>Φ � 0. This holds if and only if rank(Φ) = n, i.e., if the columns of
Φ are linearly independent. In this context, it is interesting to note that ∇2f(θ) = Φ>Φ, i.e. the pseudo inverse is
well-defined if and only if the second order sufficient conditions for optimality are satisfied.

Later, we will generalize the pseudo inverse to the case that Φ has linearly dependent column vectors, i.e.
that the matrix Φ>Φ has one or more zero eigenvalues. Due to convexity of f , points with ∇f(θ) = 0 will still
be minimizers in that case, but they will not be unique anymore. But let us first illustrate the regular case with
Φ>Φ � 0 in two examples.

Example 1 (Fitting a constant equals taking the average) Let us regard the simple optimization problem:

min
θ∈R

1

2

N∑
i=1

(yi − θ)2.

This is a linear least squares problem, where the vector y and the matrix Φ ∈ RN×1 are given by

y =


y1

y2

...
yN

 , Φ =


1
1
...
1

 . (3.8)

Because Φ>Φ = N , it can be easily seen that

Φ+ = (Φ>Φ)−1Φ> =
1

N

[
1 1 · · · 1

]
(3.9)

so we conclude that the local minimizer equals the average of the given points yi:

θ∗ = Φ+y =
1

N

N∑
i=1

yi. (3.10)
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ti

ηi

Figure 3.1: Linear regression for a set of data points (ti, yi)

Example 2 (Fitting a line) Given data points {ti}Ni=1 with corresponding values {yi}Ni=1, find the 2-dimensional
parameter vector θ = (θ1, θ2), so that the polynomial of degree one p(t; θ) = θ1 + θ2t provides a prediction of y
at time t. The corresponding optimization problem looks like:

min
θ∈R2

1

2

N∑
i=1

(yi − p(ti; θ))2 = min
θ∈R2

1

2

∥∥∥∥y − Φ

[
θ1

θ2

]∥∥∥∥2

2

(3.11)

where y is the same vector as in (3.8) and Φ is given by

Φ =


1 t1
1 t2
...

...
1 tN

 . (3.12)

The local minimizer is found by equation (3.6), where the calculation of (Φ>Φ) is straightforward:

Φ>Φ =

[
N

∑
ti∑

ti
∑
t2i

]
(3.13)

3.4 Weighted Least Squares
One might want to give different weights to different residuals in the sum of the linear least squares cost function.
This is important if the measurement errors ε(k) have zero mean and are independent, but are not identically
distributed, such that they have different variances σ2

ε (k). We would intuitively like to give less weight to those
measurements which are corrupted by stronger noise. Weighting is mandatory if different measurements represent
different physical units, if we want to avoid that we add squared apples to squared pears. Fortunately, the variance
of each measurement has the same unit as the measurement squared, such that a division of each residual by the
variance would make all terms free of units. For this reason one nearly always uses the following weighted least
squares cost function:

fWLS(θ) =

N∑
k=1

(y(k)− φ>θ)2

σ2
ε (k)

,

and we will see that this cost function ensures the best possible performance of the least squares estimator. To
bring this into a more compact notation, we can introduce a diagonal weighting matrix

W =

σ
−2
ε (1)

. . .
σ−2
ε (N)


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and then write2

fWLS(θ) = ‖y − Φθ‖2W .
Even more general, one might use any symmetric positive definite matrix W ∈ RN×N as weighting matrix. The
optimal solution is given by

θ̂WLS = arg min fWLS(θ) = (Φ>WΦ)−1Φ>Wy.

There is an alternative way to represent the solution, using the matrix Φ̃ = W
1
2 Φ and its pseudo inverse. To

derive this alternative way, let us first state the fact that there exists a unique symmetric square root W
1
2 for any

symmetric positive definite matrix W . For example, for a diagonal weighting matrix as above, the square root is
given by

W
1
2 =

σ
−1
ε (1)

. . .
σ−1
ε (N)

 .
With this square root matrix, we have the trivial identity ‖x‖2W = ‖W 1

2 ‖22 for any vector x ∈ RN and can therefore
write

fWLS(θ) = ‖W 1
2 y︸ ︷︷ ︸

=:ỹ

−W 1
2 Φ︸ ︷︷ ︸

=:Φ̃

θ‖2W .

Thus, the weighted least squares problem is nothing else than an unweighted least squares problem with rescaled
measurements ỹ = W

1
2 y and rescaled regressor matrix Φ̃ = W

1
2 Φ, and the solution can be computed using the

pseudo inverse of Φ̃ and is simply given by
θ̂WLS = Φ̃+ỹ.

This way of computing the estimate is numerically more stable so it is in general preferable. An important obser-
vation is that the resulting solution vector θ̂WLS does not depend on the total scaling of the entries of the weighting
matrix, i.e. for any positive real number α, the weighting matrices W and αW deliver identical results θ̂WLS.
Only for this reason it is meaningful to use unweighted least squares – they deliver the optimal result in the case
that the measurement errors are assumed to be independent and identically distributed. But generally speaking, all
least squares problems are in fact weighted least squares problems, because one always has to make a choice of
how to scale the measurement errors. If one uses unweighted least squares, one implicitly chooses the unit matrix
as weighting matrix, which makes sense for i.i.d. measurement errors, but otherwise not. For ease of notation, we
will in the following nevertheless continue discussing the unweighted LS formulation, keeping in mind that any
weighted least squares problem can be brought into this form by the above rescaling procedure.

3.5 Ill-Posed Least Squares and the Moore Penrose Pseudo Inverse
In some cases, the matrix Φ>Φ is not invertible, i.e. it contains at least one zero eigenvalue. In this case the
estimation problem is called ill-posed, because the solution is not unique. But there is still the possibility to obtain
a solution of the least squares problem that might give a reasonable result. For this we have to use a special type of
pseudo inverse. Let us recall that definition (3.7) of the pseudo inverse does only hold if Φ>Φ is invertible. This
implies that the set of optimal solutions S∗ has only one optimal point θ∗, given by S∗ = {θ∗} = (Φ>Φ)−1Φy. If
Φ>Φ is not invertible, the set of solutions S∗ is given by

S∗ = {θ | ∇f(θ) = 0} = {θ|Φ>Φθ − Φ>y = 0} (3.14)

In order to pick a unique point out of this set, we might choose to search for the “minimum norm solution”, i.e.
the vector θ∗ with minimum norm satisfying θ∗ ∈ S∗.

min
θ∈Rn

1

2
‖θ‖22 subject to θ ∈ S∗ (3.15)

We will show below that this minimal norm solution is given by the so called “Moore Penrose Pseudo Inverse”.

2Recall that for any positive definite matrix W the weighted Euclidean norm ‖x‖W is defined as ‖x‖W =
√
x>Wx.
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x1

x2

Figure 3.2: Φ>Φ is invertible, resulting in a unique minimum.

x1

x2

S∗

f(x)

Figure 3.3: An example of an ill-posed problem, Φ>Φ is not invertible
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Definition 6 (Moore Penrose Pseudo Inverse) Assume Φ ∈ Rm×n and that the singular value decomposition
(SVD) of Φ is given by Φ = USV >. Then, the Moore Penrose Pseudo Inverse Φ+ is given by:

Φ+ = V S+U>, (3.16)

where for

S =



σ1

σ2

. . .
σr

0
. . .

0
0 . . . 0 . . . 0


holds S+ =



σ−1
1 0

σ−1
2

. . .
...

σ−1
r 0

0
...

. . .
0 0


(3.17)

If Φ>Φ is invertible, then Φ+ = (Φ>Φ)−1Φ> what easily can be shown:

(Φ>Φ)−1Φ> = (V S>U>USV >)−1V S>U>

= V (S>S)−1V >V S>U>

= V (S>S)−1S>U>

= V


σ2

1

σ2
2

. . .
σ2
r


−1 

σ1

σ2 0
. . .

σr

U>
= V S+U>

3.5.1 Regularization for Least Squares

The minimum norm solution can be approximated by a “regularized problem”

min
θ

1

2
‖y − Φθ‖22 +

α

2
‖θ‖22, (3.18)

with small α > 0, to get a unique solution

∇f(θ) = Φ>Φθ − Φ>y + αθ (3.19)
= (Φ>Φ + αI)θ − Φ>y, (3.20)

thus θ∗ = (Φ>Φ + αI)−1Φ>y (3.21)
(3.22)

Lemma 1 limα→0(Φ>Φ + αI)−1Φ> = Φ+, with Φ+ the Moore Penrose Pseudo Inverse.

Proof: Taking the SVD of Φ = USV >, (Φ>Φ + αI)−1Φ> can be written in the form:

(Φ>Φ + αI)−1Φ> = (V S>U>USV > + α I︸︷︷︸
V V >

)−1 Φ>︸︷︷︸
US>V >

= V (S>S + αI)−1V >V S>U>

= V (S>S + αI)−1S>U>
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Rewriting the right hand side of the equation explicitly:

= V



σ2
1 + α

. . .
σ2
r + α

α
. . .

α



−1


σ1 0
. . .

σr
...

0
. . .

0 0


U>

Calculating the matrix product simplifies the equation:

= V



σ1

σ2
1+α

0

. . .

σr
σ2
r+α

...
0
α

. . .
0
α 0


UT

It can be easily seen that for α→ 0 each diagonal element has the solution:

lim
α→0

σi
σ2
i + α

=

{
1
σi

if σi 6= 0

0 if σi = 0
(3.23)

With the above lemma, we have shown that the Moore Penrose Pseudo Inverse Φ+ solves the problem (3.18) for
infinitely small α > 0. Thus it selects θ∗ ∈ S∗ with minimal norm.

3.6 Statistical Analysis of the Weighted Least Squares Estimator
In the following, we analyse the weighted least squares estimator, and we make the following assumptions:

• the N measurements y(k) are generated by a model y(k) = φ(k)>θ0 + ε(k) with θ0 the true but unknown
parameter value

• the N regression vectors φ(k) are deterministic and not corrupted by noise (attention: this assumption is
often violated in practice)

• the N noise terms ε(k) have zero mean. Often, we can also assume that they are independent from each
other, or even that they are i.i.d., and this will have consequences on the optimal choice of weighting matrix,
as we will see. We abbreviate εN = [ε(1), . . . , ε(N)]>.

• the weighted least squares estimator is computed as θ̂WLS = (Φ>NWΦN )−1Φ>NWyN .

We are most interested in the following questions: is the estimator biased or unbiased? What is its performance,
i.e. what covariance matrix does the estimate have?

3.6.1 The expectation of the least squares estimator

Let us compute the expectation of θ̂WLS.

E{θ̂WLS} = E
{

(Φ>NWΦN )−1Φ>NWyN
}

(3.24)

= (Φ>NWΦN )−1Φ>NW E {yN} (3.25)

= (Φ>NWΦN )−1Φ>NW E {ΦNθ0 + εN } (3.26)

= (Φ>NWΦN )−1(Φ>NWΦN ) θ0 + (Φ>NWΦN )−1Φ>NW E {εN} (3.27)
= θ0 + 0 (3.28)

Thus, the weighted least squares estimator has the true parameter value θ0 as expectation value, i.e. it is an unbiased
estimator. This fact is true independent of the choice of weighting matrix W .
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3.6.2 The covariance of the least squares estimator

In order to assess the performance of an unbiased estimator, one can look at the covariance matrix of θ̂WLS.
The smaller this covariance matrix in the matrix sense, the better is the estimator. Let us therefore compute the
covariance matrix of θ̂WLS. Using the identity θ̂WLS − θ0 = (Φ>NWΦN )−1Φ>NWεN , it is given by

cov(θ̂WLS) = E{(θ̂WLS − θ0)(θ̂WLS − θ0)>} (3.29)

= (Φ>NWΦN )−1Φ>NW E
{
εN ε
>
N

}
WΦN (Φ>NWΦN )−1 (3.30)

= (Φ>NWΦN )−1Φ>NW ΣεN WΦN (Φ>NWΦN )−1. (3.31)

Here, we have used the shorthand ΣεN = cov(εN ). For different choices of W , the covariance cov(θ̂WLS) will
be different. However, there is one specific choice that makes the above formula very easy: if we happen to know
ΣεN and would choose W := Σ−1

εN , we would obtain

cov(θ̂WLS) = (Φ>NWΦN )−1Φ>NW W−1 WΦN (Φ>NWΦN )−1 (3.32)

= (Φ>NWΦN )−1(Φ>NWΦN )(Φ>NWΦN )−1 (3.33)

= (Φ>NWΦN )−1 (3.34)

= (Φ>NΣ−1
εN ΦN )−1. (3.35)

Interestingly, it turns out that this choice of weighting matrix is the optimal choice, i.e. for all other weighting
matrices W one has

cov(θ̂WLS)<(Φ>NΣ−1
εN ΦN )−1.

Even more, one can show that in case of Gaussian noise with zero mean and covariance ΣεN , the weighted linear
least squares estimator with optimal weights W = Σ−1

εN achieves the lower bound on the covariance matrix that
any unbiased estimator can achieve (the so called Cramer-Rao lower bound).

3.7 Measuring the Goodness of Fit using R-Squared
In the previous sections we have provided an indicator of how good an unbiased estimator can be: the covariance
matrix. Nevertheless, the covariance is a matrix which provides information relative to the problem that is solved,
so a simple change of units of the parameters would change the values of the covariance. Also, it does not really
say if we have a good fit or not. Furthermore, because of its matrix structure, it is a rather difficult indicator to
read. As a consequence, one would like to use another indicator hat is just assesssing the “goodness of fit” and that
is easier to interpret. Ideally, we would like to have one scalar number, which can take values from a fixed range
of values that is independent of the problem data size. Such an indicator it is given by the so called coefficient of
determination or R-squared (R2) value which is represented by the following expression:

R2 = 1− ‖yN − ΦN · θ̂‖22
‖yN‖22

(3.36)

Here, one usually first subtracts the mean from the measurement data before computing the denominator ‖yN‖22,
i.e. one ensures that

∑N
k=1 y(k) = 0.

The R2 value is always between zero and one. A value of one means that the fit is perfect, i.e. the estimated
values of the linear fit, ŷN := ΦN · θ̂, coincide with the measurements, yN . A value of zero means that the linear
model is not able to explain any of the data. To get a more intuitive interpretation of intermediate R2 values, it is
interesting to regard the residuals εN = yN − ŷN and exploit the fact that ŷN and εN are orthogonal vectors. This
implies that

R2 = 1− ‖εN‖
2
2

‖yN‖22
=
‖yN‖22 − ‖εN‖22
‖yN‖22

=
‖ŷN‖22
‖yN‖22

.

This means that the R2 value can be regarded as a measure of how much of the variation in the data can be
explained by the linear model. In the derivation above, the relation ‖ŷN‖22 = ‖yN‖22−‖εN‖22 can be proved taking
into account the orthogonality condition of εN and ŷN that is due to optimality of θ̂. The optimality condition
of θ̂ in the least squares problem problem is Φ>N · (ΦN · θ̂ − yN ) = 0 i.e. ΦTN · εN = 0. This implies that
θ̂> · Φ>N · εN = ŷ>N · εN = 0 i.e. that ŷN and εN are orthogonal. Orthogonality and the fact that yN = ŷN + εN
implies that ‖yN‖22 = ‖ŷN‖22 + ‖ε̂N‖22.
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3.8 Estimating the Covariance with a Single Experiment
So far, we have analysed the theoretical properties of the LS estimator, and we know that for independent identi-
cally distributed measurement errors, the unweighted least squares estimater gives us the optimal estimator. If the
variance of the noise is σ2

ε , the least squares estimator θ̂LS = Φ+
NyN is a random variable with the true parameter

value θ0 as mean and the following covariance matrix:

Σθ̂ := cov(θ̂LS) = σ2
ε (Φ>NΦN )−1.

In addition, if the number of measurementN in one experiment is large, by a law of large numbers, the distribution
of θ̂LS follows approximately a normal distribution, even if the measurement errors were not normally distributed.
Thus, if one repeats the same experiment with the same N regression vectors many times, the estimates θ̂LS

would follow a normal distribution characterized by these two parameters, i.e. θ̂LS ∼ N (θ0,Σθ̂). In a realistic
application, however, the situation is quite different than in this analysis:

• First, we do of course not know the true value θ0

• Second, we do not repeat our experiment many times, but just do one single experiment.

• Third, we typically do not know the variance of the measurement noise σ2
ε .

Nevertheless, and surprisingly, if one makes the assumption that the noise is independent identically distributed,
one is able to make a very good guess of the covariance matrix of the estimator, which we will describe here.
The main reason is that we know the deterministic matrix ΦN exactly. The covariance is basically given by the
matrix (Φ>NΦ)−1, which only needs to be scaled by a factor, the unknown σ2

ε . Thus, we only need to find an
estimate for the noise variance. Fortunately, we have N measurements y(k) as well as the corresponding model
predictions φ(k)>θ̂LS for k = 1, . . . , N , so their average difference can be used to estimate the measurement noise.
Because the predictions are based on fitting the d-dimensional vector θ̂LS to the same measurements y(k) that we
want to use to estimate the measurement errors, we should not just take the average of the squared deviations
(y(k) − φ(k)>θ̂)2 – this would be a biased (though asymptotically unbiased) estimator. It can be shown that an
unbiased estimate for σ2

ε is obtained by

σ̂2
ε :=

1

(N − d)

N∑
k=1

(y(k)− φ(k)>θ̂LS)2 =
‖yN − ΦN θ̂LS‖22

(N − d)

Thus, our final formula for a good estimate Σ̂θ̂ of the true but unknown covariance cov(θLS) is

Σ̂θ̂ := σ̂2
ε (Φ>NΦN )−1 =

‖yN − ΦN θ̂LS‖22
(N − d)

(Φ>NΦN )−1.

What we have now are two quantities, an estimate θ̂LS of the true parameter value θ0, as well as an estimate Σ̂θ̂ for
the covariance matrix of this estimate. This knowledge helps us to make a strong statement about how probable it
is that our our estimate is close to the true parameter value. Under the assumption that our linear model structure
is correct and thus our estimator is unbiased, and the (slightly optimistic) assumption that our covariance estimate
Σ̂θ̂ is equal to the true covariance Σθ̂ of the estimator θ̂LS, we can compute the probability that an uncertainty
ellipsoid around the estimated θ̂LS contains the (unknown) true parameter value θ0.

In order to compute this probability, we need to use the cumulative density function (CDF) – i.e. the integral
of the PDF – of the so called χ2-distribution (Chi-squared) with k := d degrees of freedom. We denote this CDF,
which is illustrated for up to k = 9 degrees of freedom in Figure 3.4, by F (x, k). This function tells us how
probable it is that the square of a k-dimensional, normally distributed variable X ∼ N (0, I) with zero mean and
unit covariance has a value smaller than x, i.e.

P (‖X‖22 ≤ x) = F (x, k).

Using the fact that under the above assumptions, the random variableX := Σ
− 1

2

θ̂
(θ̂LS−θ0) is normally distributed

with zero mean and unit covariance, we thus know that for any positive x we have

P (‖θ0 − θ̂LS‖2Σ−1

θ̂

≤ x) = F (x, d).
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Figure 3.4: Cumulative density function F (x, k) for the χ2-distribution with k degrees of freedom (image:
wikipedia).

We can give another interpretation to the same fact: the probability that the true value θ0 is contained in the
confidence ellipsoid Ex(θ̂LS) defined by

Ex(θ̂LS) := {θ ∈ Rd | ‖θ − θ̂LS‖2Σ−1

θ̂

≤ x}

is given by
P
(
θ0 ∈ Ex(θ̂LS)

)
= F (x, d).

Note that in this expression, it is the ellipsoid which is random, not the true, but unknown, value θ0. We call the
confidence ellipsoid for x = 1, i.e. the set

E1(θ̂LS) := {θ ∈ Rd | ‖θ − θ̂LS‖2Σ−1

θ̂

≤ 1}

the one-sigma confidence ellipsoid. The probability that the true value is contained in it decreases with increasing
dimension d = k of the parameter space and can be found in Figure 3.4 at x = 1.

Note that the variance for one single component of the parameter vector can be found as a diagonal entry in
the covariance matrix, and that the probability that the true value of this single component is inside the one sigma
interval around the estimated value is always 68.3%, independent of the parameter dimension d. This is due to the
fact that each single component of θ̂ follows a one dimensional normal distribution.

For mathematical correctness, we have to note that we had to assume that the covariance matrix Σθ̂ is exactly
known in order to make use of the χ2-distribution. On the other hand, in practice, we can only use its estimate
Σ̂θ̂ in the definition of the confidence ellipsoid. A refined analysis, which is beyond our ambitions, would need to

take into account that also Σ̂θ̂ is a random variable, which implies that X := Σ̂
− 1

2

θ̂
(θ̂LS−θ0) follows a distribution

which is similar to, but not equal to a standard normal distribution. For the practice of least squares estimation,
however, the above characterization of confidence ellipsoids with the χ2-distribution is accurate enough and can
help us to assess the quality of an estimation result after a single experiment.
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Chapter 4

Maximum Likelihood and Bayesian
Estimation

In this chapter we are mostly concerned with models described by a possibly nonlinear function M(θ) that maps
from θ ∈ Rd into the space RN of measurements, yN . We sometimes drop the index N , i.e. write just y ∈ RN ,
and we sometimes denote the components of y by y1, . . . , yN instead of y(1), . . . , y(N). Also, the measurements
are disrupted by noise, which we call ε ∈ RN . Altogether, the prediction model for obtaining the measurements is

y = M(θ) + ε.

We will treat to related types of estimators, the maximum likelihood estimator and the Bayesian estimator, which
both need nonlinear optimization solvers, which we also explain in this chapter. We conclude the chapter with a
fundamental inequality that every unbiased estimator needs to satisfy, the famous Cramer-Rao inequality which
gives a lower bound on the covariance matrix.

4.1 Maximum Likelihood Estimation

Definition 7 (Likelihood) The likelihood function L(θ) is a function of θ for given measurements y that describes
how likely the measurements would have been if the parameter would have the value θ. It is defined as L(θ) =
p(y|θ), using the PDF of y for given θ.

Definition 8 (Maximum-Likelihood Estimate) The maximum-likelihood estimate of the unknown parameter θ
is the parameter value that maximizes the likelihood function L(θ) = p(y|θ).

Assume yi = Mi(θ) + εi with θ the “true” parameter, and εi Gaussian noise with expectation value E(εi) = 0,
E(εi εi) = σ2

i and εi, εj independent for i 6= j . Then holds

p(y|θ) =

N∏
i=1

p(yi | θ) (4.1)

= C

N∏
i=1

exp

(−(yi −Mi(θ))
2

2σ2
i

)
(4.2)

with C =
∏N
i=1

1√
2πσ2

i

. Taking the logarithm of both sides gives

log p(y|θ) = log(C) +

N∑
i=1

− (yi −Mi(θ))
2

2σ2
i

(4.3)

31
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with a constant C. Due to monotonicity of the logarithm holds that the argument maximizing p(y|θ) is given by

arg max
θ∈Rd

p(y|θ) = arg min
θ∈Rd

− log(p(y|θ)) (4.4)

= arg min
θ∈Rd

m∑
i=1

(yi −Mi(θ))
2

2σ2
i

(4.5)

= arg min
θ∈Rd

1

2
‖S−1(y −M(θ))‖22 (4.6)

Thus, the least squares problem has a statistical interpretation. Note that due to the fact that we might have different
standard deviations σi for different measurements yi we need to scale both measurements and model functions in
order to obtain an objective in the usual least squares form ‖ŷ − M̂(θ)‖22, as

min
θ

1

2

N∑
i=1

(
yi −Mi(θ)

σi

)2

= min
θ

1

2
‖S−1(y −M(θ))‖22 (4.7)

= min
θ

1

2
‖S−1y − S−1M(θ)‖22 (4.8)

with S =

σ1

. . .
σN

 .

Statistical Interpretation of Regularization terms: Note that a regularization term like α‖θ − θ̄‖22 that is
added to the objective can be interpreted as a “pseudo measurement” θ̄ of the parameter value θ, which includes
a statistical assumption: the smaller α, the larger we implicitly assume the standard deviation of this pseudo-
measurement. As the data of a regularization term are usually given before the actual measurements, regularization
is also often interpreted as “a priori knowledge”. Note that not only the Euclidean norm with one scalar weighting
α can be chosen, but many other forms of regularization are possible, e.g. terms of the form ‖A(θ − θ̄)‖22 with
some matrix A.

4.1.1 L1-Estimation

Instead of using ‖.‖22, i.e. the L2-norm in the fitting problem, we might alternatively use ‖.‖1, i.e., the L1-norm.
This gives rise to the so called L1-estimation problem:

min
θ
‖y −M(θ)‖1 = min

θ

N∑
i=1

|yi −Mi(θ)| (4.9)

Like the L2-estimation problem, also the L1-estimation problem can be interpreted statistically as a maximum-
likelihood estimate. However, in the L1-case, the measurement errors are assumed to follow a Laplace distribution
instead of a Gaussian.

An interesting observation is that the optimal L1-fit of a constant θ to a sample of different scalar values
y1, . . . , yN just gives the median of this sample, i.e.

arg min
θ∈R

N∑
i=1

|yi − θ| = median of {y1, . . . , yN}. (4.10)

Remember that the same problem with the L2-norm gave the average of yi. Generally speaking, the median is less
sensitive to outliers than the average, and a detailed analysis shows that the solution to general L1-estimation prob-
lems is also less sensitive to a few outliers. Therefore, L1-estimation is sometimes also called “robust” parameter
estimation.
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4.2 Bayesian Estimation and the Maximum A Posteriori Estimate
The Maximum Likelihood estimation solves the problem arg maxθ∈Rd p(yN |θ). However, one might instead want
to maximise the probability of θ given the measurements yN , i.e. p(θ|yN ). This last probability it is not known
beforehand, but Bayes’ rule can be applied to obtain a computable expression:

p(θ|yN ) =
p(yN , θ)

p(yN )
=
p(yN |θ) · p(θ)

p(yN )
(4.11)

From Equation (4.11) it can be seen that the probability to maximise p(θ|yN ) depends on 3 factors:

1. A constant term, p(yN ), that need not be regarded when optimizing over θ.

2. The same term which was maximised for Maximum Likelihood, p(yN |θ).

3. An extra term p(θ) that introduces the need for a-priory knowledge, or an assumption, on the value of θ.

The systematic approach to incorporate the prior knowledge is always the same: to incorporate an extra min-
imisation term representing the negative log-probability of this prior knowledge (as it was done with the ML term).
This resulting estimate is known as the Maximum a Posteriori Estimate (MAP) and represented by:

θ̂MAP = arg min
θ∈R
{− log(p(yN |θ))− log(p(θ))} (4.12)

The problem with this method is that it leads to bias when the prior knowledge on θ is not accurate (which it
usually is not, otherwise we would not need to estimate θ).

4.2.1 MAP example: Regularised Least Squares
Assumptions:

1. The measurements yN ∈ RN have i.i.d. noise, the model is linear M(θ) = Φ · θ, and θ ∈ R.

2. Prior knowledge on the parameter θ is given: θ = θ̄ ± σθ, where θ̄ is the a-priori most probable value σθ its
standard deviation.

With the first assumption, it is obvious that the minimisation problem will have a term that will minimize a
standard least squares problem, and with the second assumption a second minimization term proportional to the
difference θ − θ̄ and representing the probability of the noise σθ must be included. The final expression is:

θ̂MAP = arg min
θ∈R

1

2
· 1

σ2
ε

· ‖yN − ΦN · θ‖22 +
1

2
· 1

σ2
θ

· (θ − θ̄)2 (4.13)

4.2.2 Differences between ML and MAP estimation
Generally speaking, MAP can be considered as a generalisation of ML, where in the case of ML the weight in the
prior-knowledge is zero. Another way to look at it is that MAP is ML with ”pseudo-measurements” θ̄ of θ.

4.3 Recursive Linear Least Squares
In all previous sections, we have introduced several optimisation methods which provide a useful tool for parameter
estimation. Nevertheless, they have a main disadvantage: they can only be used offline, i.e. they optimise and fit a
finite number N of measurements to a given model.

In real-life applications, problems where the flow of data is continuous are not unusual. Here, online parameter
estimators must be used, i.e. the number of measurements is infinite [y(1), y(2), . . . , y(N), y(N + 1), . . . ].

The main aim of this section is to provide a tool that can minimise the problem:

θ̂ML(N) = arg min
θ∈R

1

2
‖yN − ΦN · θ‖22 (4.14)
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for increasing N but without increasing the computational time. This task is fairly complex since ΦN ∈ RN×d
becomes infinitely long when N → ∞. In order to achieve the goal stated above, the main idea is to find a
recursive equation which allows the calculation of θ̂ML(N + 1) using the previous optimal estimator θ̂ML(N), the
new measurement y(N + 1) and the new regressor ϕ(N + 1). We want to do so without the need of storing and/or
using in the calculation the previous measurement or regressor values. We make the following assumptions:

1. The sequence of measurements [y(1), y(2), . . . , y(N), y(N + 1), . . . ] is infinite and updated with a new
value at each time step.

2. The sequence of regressors [ϕ(1), ϕ(2), . . . , ϕ(N), ϕ(N + 1), . . . ] is infinite and updated with a new value
at each time step

3. There is only measurement noise and it is i.i.d. and Gaussian.

Lemma 2 Let yN ∈ RN be a set ofN measurements used on a Least Squares problem, ΦN ∈ RN×d the regressor
of the problem, and θ ∈ Rd the estimator, then:

1

2
· ‖yN − ΦN · θ‖22 =

1

2
· ‖θ − θ̂ML(N)‖2Φ>N ·ΦN + const (4.15)

Proof: The linear least squares equation we are solving is Φ> ·Φ · θ̂ = Φ> ·y. Remember that this equation only
has a unique solution if the inverse of Φ> · Φ exists, which we assume here. In the following, we will use the fact
that Φ>N · ΦN · θ̂ML(N) = Φ>N · yN holds, after N measurements have been made.

We can expand the minimisation term of the LS problem as follows:

1

2
· ‖yN − ΦN · θ‖22 =

=
1

2
· ‖yN‖22 +

1

2
· θ> · Φ>N · ΦN · θ − θ> · Φ>N · yN =

=
1

2
· ‖yN‖22 +

1

2
· θ> · Φ>N · ΦN · θ − θ> · Φ>N · ΦN · θ̂ML =

=
1

2
· ‖yN‖22 −

1

2
· θ̂>ML · Φ>N · ΦN · θ̂ML +

1

2
· (θ − θ̂ML)> · Φ>N · ΦN · (θ − θ̂ML)> =

= const +
1

2
· ‖θ − θ̂ML(N)‖2Φ>N ·ΦN

(4.16)

Observation 1 Let QN = Φ>NΦN ∈ Rd×d, then QN follows a recursion:

QN+1 = Φ>N+1 · ΦN+1 =

[
ΦN

ϕ(N + 1)>

]>
·
[

ΦN
ϕ(N + 1)>

]
=

= QN + ϕ(N + 1) · ϕ(N + 1)>
(4.17)

And as a consequence, θ̂ML(N + 1) can be expressed as:

θ̂ML(N + 1) = (Φ>N+1 · ΦN+1)−1 · Φ>N+1 · yN+1 = Q−1
N+1 · (Φ>N+1 · yN+1) (4.18)

Observation 2

Φ>N+1 · yN+1 =

[
ΦN

ϕ(N + 1)>

]>
·
[

yN
y(N + 1)

]
= Φ>N · yN + ϕ(N + 1) · y(N + 1) =

= Φ>N · ΦN · θ̂ML(N) + ϕ(N + 1) · y(N + 1)

(4.19)

Definition 9 (Recursive Least Squares Algorithm) The recursive least squares algorithm consists of 2 steps,
which are computed with a every new measurement N , and which are defined by the equations below:

QN+1 = QN + ϕ(N + 1) · ϕ(N + 1)> (4.20)

θ̂ML(N + 1) = θ̂ML(N) +Q−1
N+1 · ϕ(N + 1) · [y(N + 1)− ϕ(N + 1)> · θ̂ML(N)] (4.21)
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Here, (4.20) comes directly from Observation 1, and where (4.21) is proved below, taking into account both
observations 1 and 2. The first term of Equation (4.21) represents the best prior guess, and the second term the so
called “innovation”.

Furthermore, from the structure of Equation (4.21), it can be said that the RLS algorithm is the solution of the
following minimisation problem:

θ̂ML(N + 1) = arg min
θ∈R

1

2
‖yN − ΦN · θ‖22 =

= arg min
θ∈Rd

(
1

2
· ‖θ − θ̂ML(N)‖2QN +

1

2
· ‖y(N + 1)− ϕ(N + 1)> · θ‖22

) (4.22)

This problem could be stated directly from Lemma 2, where it was seen that the minimisation function (4.22)
it is known to be constant for a fixed θ. However, the intermediate steps were taken for an easy interpretation by
the reader.

Proof:

θ̂ML(N + 1) = Q−1
N+1 · (Φ>N+1 · yN+1)

= Q−1
N+1 · (Φ>N · ΦN · θ̂ML(N) + ϕ(N + 1) · y(N + 1))

= Q−1
N+1 · ([Φ>N · ΦN + ϕ(N + 1) · ϕ(N + 1)>] · θ̂ML(N)

− ϕ(N + 1) · ϕ(N + 1)> · θ̂ML(N) + ϕ(N + 1) · y(N + 1))

= Q−1
N+1 ·QN+1θ̂ML(N) +Q−1

N+1 · (ϕ(N + 1) · [y(N + 1)− ϕ(N + 1)> · θ̂ML(N)])

= θ̂ML(N) +Q−1
N+1 · ϕ(N + 1) · [y(N + 1)− ϕ(N + 1)> · θ̂ML(N)]

(4.23)

4.3.1 Initialisation and implementation considerations of RLS
In practise, two fundamental questions arises when implementing a RLS algorithm:

1. How should Q0 be initialised? It is important to avoid singularity.
Answer: considering the way that QN enters Equation (4.22), it is clear that QN is in a way the inverse of
the covariance of the θ parameter, QN ≈ Σ−1

θ̂ML(N)
.

Moreover, if some prior knowledge on θ can be assumed, for example, θ ∼ N(θ0, Q0), this knowledge
can be included as a regularisation term of the form ‖θ‖2Q0

, where Q0 is small and positive definite. This
regularisation with a positive definite matrix Q0 leads to consistently non-singular QN , because adding
successive terms would only increase the eigenvalues of the matrix, keeping it positive definite and thus
non-singular.

2. How to avoid that QN → ∞ when N → ∞? The higher the QN the less influence will have the new
measurements.

The solution of this problem is easier than the previous one. The only thing that is necessary is to down-
weight past information using a regularisation constant α. The main idea is that α multiplies QN in the
equation of QN+1, so that past measurements have less weight than the most recent ones, and on top of that,
QN does not increase to infinity (if the new contributions φ(N + 1)φ(N + 1)> are bounded).

This two implementations can be seen on the set of equations below. Thes equations re-write Equation (4.22)
as:

θ̂ML(N + 1) = arg min
θ∈Rd

(
α · 1

2
· ‖θ − θ̂ML(N)‖2QN +

1

2
· ‖y(N + 1)− ϕ(N + 1)> · θ‖22

)
(4.24)

In the recursive update this translates to:

Q0 given, and θ̂ML(0) given,

QN+1 = α ·QN + ϕ(N + 1) · ϕ(N + 1)>,

θ̂ML(N + 1) = θ̂ML(N) +Q−1
N+1 · ϕ(N + 1) · [y(N + 1)− ϕ(N + 1)> · θ̂ML(N)]

(4.25)
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4.4 Newton-type optimisation methods
So far, all presented optimisation methods have as a common feature linearity on the estimator, i.e. the model
M(θ) describes the measurements yN as a linear function of θ: M(θ) = Φ · θ.

Furthermore, it has always been assumed that there is Gaussian noise on the measurements which can be
modeled with a covariance matrix Σθ. When both facts are combined, the classical Weighted Linear Least Squares
Problem appears, and its analytical solution θ̂WLS = (Φ> ·W · Φ)−1 · Φ> ·W · y can be easily extracted.

In general, M(θ) is not linear, and the measurement noise might not be Gaussian, which leads to a general
problem where a non-analytical solution needs to be found. In such cases, it is important to have a method which
can find a local or even global minimum of the problem. In order to present a general optimisation method, it is
important to introduce first the general optimality conditions.

4.4.1 Optimality conditions
arg min

θ∈Rd
f(θ), f ∈ R (4.26)

Let (4.26) be a general optimisation problem, then the following conditions can be established:

• First order necessary condition (FONC):
If θ? minimizes (4.26) =⇒ ∇f(θ?) = 0

• Second order necessaary condition (SONC):
If θ? minimizes (4.26) =⇒ ∇2f(θ?) � 0

• Second order sufficient condition (SOSC):
If ∇2f(θ?) � 0 & ∇f(θ?) = 0 =⇒ θ? minimizes (4.26).

• FONC for convex functions:
θ? minimizes (4.26) & θ? is a global minimum ⇐⇒ ∇f(θ?) = 0 | ∀ f(θ) convex.

4.4.2 Descent direction methods
Let again consider the general optimisation problem:

arg min
x∈Rd

f(x), f ∈ R (4.27)

By the optimisation conditions, we could calculate all the stationary points (∇f(x) = 0) and then evaluate
their Hessian to see whether it is positive definite. However, solving the set of equations ∇f(x) = 0 is usually a
very difficult task.

Because of that, we will introduce an iterative algorithm for finding the stationary points instead of trying to
find the analytical solution. The iterative algorithms that we will present have the form of:

xk+1 = xk + tk · dk, k = 0, 1, 2, . . . (4.28)

where dk ∈ Rd it is called a descent direction and tk ∈ R the stepsize. In order to choose the step size there
are many different algorithms, three popular of which are: constant step size, exact line search and backtracking.
However, since the scope of this lecture is not an optimisation class, we encourage those readers who are more
curious to take a look at one of the excellent textbooks [NW06], [BV04] or [Bec14]. In the case of a descent
direction, it is important however to look at its definition and one of its property, so any descent direction method
can be understood.

Definition 10 (Descent direction) A vector dk ∈ Rd is called a descent direction of f at x if the directional
derivative is negative:

f ′(x; d) = ∇f(x)> · d < 0 (4.29)

One of the most important properties of descent directions is that steps small enough along this directions lead
to a decrease in the objective function:
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Lemma 3 (descent property of descent direction) Let f be a continuous differentiable function over Rd, and let
x ∈ Rd. Let a vector dk 6= 0 ∈ Rd be a descent direction of f at x. Then there exists and ε > 0 such that:

f(x+ t · dk) < f(x) (4.30)

for any t ∈ (0, ε].

With the last lemma in mind, it can be understood that the idea of algorithm (4.28) is to iterate over the objective
function, reducing its value at each iteration by choosing a descent direction and suitably short stepsize.

Gradient or Steepest Descent Method

It can be proved that the direction represented by the negative gradient dk = −∇f(x) is a descent direction. Thus,
one of the well-known implementation of algorithm (4.28) takes the form of:

xk+1 = xk − tk · ∇f(xk), k = 0, 1, 2, . . . (4.31)

Which is iterated until ‖∇f(xk+1)‖ < ε. One can show that the negative gradient points into the direction of
steepest descent in Euclidean space. Though this sounds like a good property, the gradient method suffers from
very slow convergence in practice.

4.4.3 Newton’s method

The steepest descent method only uses first order information. Let us now assume that f is twice continuously
differentiable, and let us introduce a method that uses second order information. The main idea is that this new
method tries to locally minimise the quadratic Taylor approximation of f(x) at some point xk. Considering first
the quadratic approximation of f(x) around the vicinity of xk:

f(x) = f(xk) +∇f(xk)> · (x− xk) +
1

2
· (x− xk)>∇2f(xk) · (x− xk) (4.32)

It can be easily calculated the point that minimises such a expression as:

xk+1 = arg min
x∈Rd

f(xk) +∇f(xk)> · (x− xk) +
1

2
· (x− xk)>∇2f(xk) · (x− xk) (4.33)

which is only defined if∇2f(xk) is positive definite. The unique minimiser of (4.33) is given by

∇f(xk) +∇2f(xk) · (xk+1 − xk) (4.34)

which leads to the exact Newthon method defined by:

xk+1 = xk − (∇2f(xk))−1 · ∇f(xk) (4.35)

It can be seen that Newton’s method is just a special case of a scaled gradient method where the step size t is
substituted by the inverse of the Hessian. Computing the Hessian can be costly but in practice the Newton Method
performs better than the gradient method. Some of its advantage are remarked below:

1. Convergence of Newton’s method is more rapid, and less dependent of the problem size. Near x? the
convergence is quadratic.

2. Newton’s method is insensitive to the choice of coordinates. It is not dependent on the choice of algorithm
parameters (step size).

3. Newton’s method scales well with problem size. Performance on R10000 is similar to problems in R10.
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Gauss-Newton method

If we have a general Non-linear Least Squares problem of the form:

arg min
θ∈Rd

f(θ) = arg min
θ∈Rd

1

2
· ‖yN −M(θ)‖22 (4.36)

a good and faster approximation of Newton’s iterative method is easy to prove and can be introduced.

Definition 11 (Gauss-Newton’s iterative method for finding stationary points) Let θ̂ be the optimal solution of
the problem (4.36), then θ̂ is also a stationary point of f(θ), and can be found with the iterative method described
below:

θk+1 = θk −
(
∂M

∂θ
(θk)

>
· ∂M
∂θ

(θk)

)−1

· ∂M
∂θ

>
(θk) · (M(θk)− y) =

= arg min
θ∈Rd

1

2
· ‖(M(θk)− y) +

∂M

∂x
(xk) · (θ − θk)‖

(4.37)

Proof: In order to use Newton’s method the Gradient∇f(θ) and the Hessian∇2f(θ) must be calculated, so let’s
derive an expression for them in the case of problem (4.36):

∇f(θ) =

=
∂

∂θ
[
1

2
(M(θ)− yN )> · (M(θ)− yN )]> =

=
∂M

∂θ
(θ)
>
· (M(θ)− yN ) =

N∑
k=1

∇Mk(θ) · (Mk(θ)− y(k))

(4.38)

∇2f(θ) =

=
∂

∂θ
(
∂

∂θ
[(M(θ)− yN )> · (M(θ)− yN )]>) =

=
∂

∂θ

[ N∑
k=1

∇Mk(θ) · (Mk(θ)− y(k))

]
=

=

N∑
k=1

∇2Mk(θ) · (Mk(θ)− y(k)) +

N∑
k=1

∇Mk(θ) · ∇Mk(θ)> ≈

≈ ∂M

∂θ
(θ)
>
· ∂M
∂θ

(θ)

(4.39)

Where the approximation
∑N
k=1∇2Mk(x) · (Mk(x)−y(k))�∑N

k=1∇Mk(x) · (∇Mk(x))> is made, which
is usually correct since normally either∇2Mk(x) or (Mk(x)− y(k)) are small.

Taking into account these two results, Equation (4.37) is directly obtained substituting the values of∇f(θ) and
∇2f(θ) into the Newthon’s method algorithm defined by Equation (4.35).

4.5 Cramer-Rao-Inequality
Theorem 5 (Cramer-Rao-Inequality: lower bound on the covariance of an unbiased estimator) Let p(yN |θ)
be the probability density function of obtaining the measurements yN given the parameters θ (the one to be max-
imized in a Maximum Likelihood problem). Furthermore, assume that the probability density function p(yN |θ0)

for the true θ0 is known. Then, any unbiased estimator θ̂(yN ) is a random variable due to its dependence on
the random variable yN , and it has a covariance matrix Σθ̂ := cov(θ̂(yN )) that is bigger than the inverse of the
so-called Fisher information matrix M :

Σθ̂ �M−1 (4.40)
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Definition 12 (Fisher information matrix M ) Let L(θ, yN ) := − log p(yN |θ) be the negative log likelihood
function (which is minimised in a general Maximum Likelihood problem). Then, the Fisher information matrix
associated with such a problem is defined as:

M = E{∇2
θL(θ, yN )} =

∫
yN

∇2
θL(θ, yN ) · p(yN |θ) · dyN (4.41)

We will not prove the Cramer-Rao theorem here but refer e.g. to the book of Ljung [Lju99] for the proof. We can
however apply the theorem to the case that we are minimising a linear model with gaussian noise N (0,Σ). Then
the Cramer-Rao-Inequality states that

Σθ̂ �M−1 = (Φ>N · Σ−1 · Φ)−1 (4.42)

To see this, we use the fact that in the case of a linear model with Gaussian noise, L(θ, yN ) becomes:

L(θ, yN ) =
1

2
· (ΦN · θ − yN )> · Σ−1 · (ΦN · θ − yN ) (4.43)

Its Hessian can be easily calculated as:

∇2
θL(θ, yN ) = Φ>N · Σ−1 · ΦN (4.44)

where it is easily seen that the Hessian is constant and independent from θ and yN , thus its expectation, which
equals the Fisher information matrix, is identical to this constant value:

M = E{∇2
θL(θ, yN )} = ∇2

θL(θ, yN ) = Φ>N · Σ−1 · ΦN (4.45)

This application of the Cramer-Rao inequality confirms the result mentioned previously on Section 3.6.2, where
the smallest covariance for a weighted least squares estimator was obtained when choosing the correct weighting
matrix W = Σ−1.

Another interesting result which we will not prove here is that the covariance matrix of the ML-estimator for
i.i.d. measurements y(1), . . . , y(N) approaches, for N →∞, the Cramer-Rao lower bound, i.e. the inverse of the
corresponding Fisher information matrix MML(N) and the distribution of θ̂ML becomes asymptotically normal,
i.e. θ̂ML ∼ N (θ0,MML(N)−1).



i
i

“msi” — 2015/3/10 — 18:51 — page 40 — #40 i
i

i
i

i
i

40 CHAPTER 4. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION



i
i

“msi” — 2015/3/10 — 18:51 — page 41 — #41 i
i

i
i

i
i

Chapter 5

Dynamic Systems in a Nutshell

In this lecture, our major aim is to model and identify dynamic systems, i.e. processes that are evolving with time.
These systems can be characterized by states x and parameters p that allow us to predict the future behavior of
the system. If the state and the parameters are not known, we first need to estimate them based on the available
measurement information. The estimation process is very often optimization-based, and thus, derivatives play a
crucial role in this chapter. Often, a dynamic system can be controlled by a suitable choice of inputs that we denote
as controls u in this script, and the ultimate purpose of modelling and system identification is to be able to design
and test control strategies.

As an example of a dynamic system, we might think of an electric train where the state x consists of the current
position and velocity, and where the control u is the engine power that the train driver can choose at each moment.
We might regard the motion of the train on a time interval [tinit, tfin], and the ultimate aim of controller design
could be to minimize the consumption of electrical energy while arriving in time. Before we can decide on the
control strategy, we need to know the current state of the train. Even more important, we should know important
model parameters such as the mass of the train or how the motor efficiency changes with speed.

To determine the unknown system parameters, we typically perform experiments and record measurement
data. In optimization-based state and parameter estimation, the objective function is typically the misfit between
the actual measurements and the model predictions.

A typical property of a dynamic system is that knowledge of an initial state xinit and a control input trajectory
u(t) for all t ∈ [tinit, tfin] allows one to determine the whole state trajectory x(t) for t ∈ [tinit, tfin]. As the motion
of a train can very well be modelled by Newton’s laws of motion, the usual description of this dynamic system is
deterministic and in continuous time and with continuous states.

But dynamic systems and their mathematical models can come in many variants, and it is useful to properly
define the names given commonly to different dynamic system classes, which we do in the next section. After-
wards, we will discuss two important classes, continuous time and discrete time systems, in more mathematical
detail.

5.1 Dynamic System Classes

In this section, let us go, one by one, through the many dividing lines in the field of dynamic systems.

Continuous vs Discrete Time Systems

Any dynamic system evolves over time, but time can come in two variants: while the physical time is continu-
ous and forms the natural setting for most technical and biological systems, other dynamic systems can best be
modelled in discrete time, such as digitally controlled sampled-data systems, or games.

We call a system a discrete time system whenever the time in which the system evolves only takes values on a
predefined time grid, usually assumed to be integers. If we have an interval of real numbers, like for the physical
time, we call it a continuous time system. In this lecture, we usually denote the continuous time by the variable
t ∈ R and write for example x(t). In case of discrete time systems, we typically use the index variable k ∈ N, and
write xk or x(k) for the state at time point k.

41
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Continuous vs Discrete State Spaces

Another crucial element of a dynamic system is its state x, which often lives in a continuous state space, like the
position of the train, but can also be discrete, like the position of the figures on a chess game. We define the state
space X to be the set of all values that the state vector x may take. If X is a subset of a real vector space such as
Rnx or another differentiable manifold, we speak of a continuous state space. If X is a finite or a countable set, we
speak of a discrete state space. If the state of a system is described by a combination of discrete and continuous
variables we speak of a hybrid state space.

Finite vs Infinite Dimensional State Spaces

The class of continuous state spaces can be further subdivided into the finite dimensional ones, whose state can
be characterized by a finite set of real numbers, and the infinite dimensional ones, which have a state that lives in
function spaces. The evolution of finite dimensional systems in continuous time is usually described by ordinary
differential equations (ODE) or their generalizations, such as differential algebraic equations (DAE).

Infinite dimensional systems are sometimes also called distributed parameter systems, and in the continuous
time case, their behaviour is typically described by partial differential equations (PDE). An example for a con-
trolled infinite dimensional system is the evolution of the airflow and temperature distribution in a building that is
controlled by an air-conditioning system. Systems with delay are another class of systems with infinite dimensional
state space.

Continuous vs Discrete Control Sets

We denote by U the set in which the controls u live, and exactly as for the states, we can divide the possible control
sets into continuous control sets and discrete control sets. A mixture of both is a hybrid control set. An example
for a discrete control set is the set of gear choices for a car, or any switch that we can can choose to be either on or
off, but nothing in between.

Time-Variant vs Time-Invariant Systems

A system whose dynamics depend on time is called a time-variant system, while a dynamic system is called time-
invariant if its evolution does not depend on the time and date when it is happening. As the laws of physics are
time-invariant, most technical systems belong to the latter class, but for example the temperature evolution of a
house with hot days and cold nights might best be described by a time-variant system model. While the class
of time-variant systems trivially comprises all time-invariant systems, it is an important observation that also the
other direction holds: each time-variant system can be modelled by a nonlinear time-invariant system if the state
space is augmented by an extra state that takes account of the advancement of time, and which we might call the
“clock state”.

Linear vs Nonlinear Systems

If the state trajectory of a system depends linearly on the initial value and the control inputs, it is called a linear
system. If the dependence is affine, one should ideally speak of an affine system, but often the term linear is used
here as well. In all other cases, we speak of a nonlinear system.

A particularly important class of linear systems are linear time invariant (LTI) systems. An LTI system can be
completely characterized in at least three equivalent ways: first, by two matrices that are typically called A and B;
second, by its step response function; and third, by its frequency response function. A large part of the research in
the control community is devoted to the study of LTI systems.

Controlled vs Uncontrolled Dynamic Systems

While we are in this lecture mostly interested in controlled dynamic systems, i.e. systems that have a control input
that we can choose, it is good to remember that there exist many systems that cannot be influenced at all, but that
only evolve according to their intrinsic laws of motion. These uncontrolled systems have an empty control set,
U = ∅. If a dynamic system is both uncontrolled and time-invariant it is also called an autonomous system.
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Stable vs Unstable Dynamic Systems

A dynamic system whose state trajectory remains bounded for bounded initial values and controls is called a stable
system, and an unstable system otherwise. For autonomous systems, stability of the system around a fixed point
can be defined rigorously: for any arbitrarily small neighborhoodN around the fixed point there exists a region so
that all trajectories that start in this region remain in N . Asymptotic stability is stronger and additionally requires
that all considered trajectories eventually converge to the fixed point. For autonomous LTI systems, stability can
be computationally characterized by the eigenvalues of the system matrix.

Deterministic vs Stochastic Systems

If the evolution of a system can be predicted when its initial state and the control inputs are known, it is called a
deterministic system. When its evolution involves some random behaviour, we call it a stochastic system.

The movements of assets on the stockmarket are an example for a stochastic system, whereas the motion of
planets in the solar system can usually be assumed to be deterministic. An interesting special case of deterministic
systems with continuous state space are chaotic systems. These systems are so sensitive to their initial values that
even knowing these to arbitrarily high, but finite, precisions does not allow one to predict the complete future of the
system: only the near future can be predicted. The partial differential equations used in weather forecast models
have this property, and one well-known chaotic system of ODE, the Lorenz attractor, was inspired by these.

Open-Loop vs Closed-Loop Controlled Systems

When choosing the inputs of a controlled dynamic system, one first way is decide in advance, before the process
starts, which control action we want to apply at which time instant. This is called open-loop control in the systems
and control community, and has the important property that the control u is a function of time only and does not
depend on the current system state.

A second way to choose the controls incorporates our most recent knowledge about the system state which
we might observe with the help of measurements. This knowledge allows us to apply feedback to the system by
adapting the control action according to the measurements. In the systems and control community, this is called
closed-loop control, but also the more intuitive term feedback control is used. It has the important property that
the control action does depend on the current state or the latest measurements.

5.2 Continuous Time Systems
Most systems of interest in science and engineering are described in form of deterministic differential equations
which live in continuous time. On the other hand, all numerical simulation methods have to discretize the time
interval of interest in some form or the other and thus effectively generate discrete time systems. We will thus
briefly sketch some relevant properties of continuous time systems in this section, and show how they can be
transformed into discrete time systems. Later, we will mainly be concerned with discrete time systems, while we
occasionally come back to the continuous time case.

Ordinary Differential Equations

A controlled dynamic system in continuous time can in the simplest case be described by an ordinary differential
equation (ODE) on a time interval [tinit, tfin] by

ẋ(t) = f(x(t), u(t), t), t ∈ [tinit, tfin] (5.1)

where t ∈ R is the time, u(t) ∈ Rnu are the controls, and x(t) ∈ Rnx is the state. The function f is a map from
states, controls, and time to the rate of change of the state, i.e. f : Rnx × Rnu × [tinit, tfin] → Rnx . Due to the
explicit time dependence of the function f , this is a time-variant system.

We are first interested in the question if this differential equation has a solution if the initial value x(tinit) is
fixed and also the controls u(t) are fixed for all t ∈ [tinit, tfin]. In this context, the dependence of f on the fixed
controls u(t) is equivalent to a a further time-dependence of f , and we can redefine the ODE as ẋ = f̃(x, t) with
f̃(x, t) := f(x, u(t), t). Thus, let us first leave away the dependence of f on the controls, and just regard the
time-dependent uncontrolled ODE:

ẋ(t) = f(x(t), t), t ∈ [tinit, tfin]. (5.2)
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Initial Value Problems

An initial value problem (IVP) is given by (5.2) and the initial value constraint x(tinit) = xinit with some fixed
parameter xinit. Existence of a solution to an IVP is guaranteed under continuity of f with respect to to x and t
according to a theorem from 1886 that is due to Giuseppe Peano. But existence alone is of limited interest as the
solutions might be non-unique.

Example 3 (Non-Unique ODE Solution) The scalar ODE with f(x) =
√
|x(t)| can stay for an undetermined

duration in the point x = 0 before leaving it at an arbitrary time t0. It then follows a trajectory x(t) = (t− t0)2/4
that can be easily shown to satisfy the ODE (5.2). We note that the ODE function f is continuous, and thus
existence of the solution is guaranteed mathematically. However, at the origin, the derivative of f approaches
infinity. It turns out that this is the reason which causes the non-uniqueness of the solution.

As we are only interested in systems with well-defined and deterministic solutions, we would like to formulate
only ODE with unique solutions. Here helps the following theorem by Charles Émile Picard (1890) and Ernst
Leonard Lindelöf (1894).

Theorem 6 (Existence and Uniqueness of IVP) Regard the initial value problem (5.2) with x(tinit) = xinit, and
assume that f : Rnx × [tinit, tfin] → Rnx is continuous with respect to x and t. Furthermore, assume that f
is Lipschitz continuous with respect to x, i.e., that there exists a constant L such that for all x, y ∈ Rnx and all
t ∈ [tinit, tfin]

‖f(x, t)− f(y, t)‖ ≤ L‖x− y‖. (5.3)

Then there exists a unique solution x : [tinit, tfin]→ Rnx of the IVP.

Lipschitz continuity of f with respect to x is not easy to check. It is much easier to verify if a function is differ-
entiable. It is therefore a helpful fact that every function f that is differentiable with respect to x is also locally
Lipschitz continuous, and one can prove the following corollary to the Theorem of Picard-Lindelöf.

Corollary 1 (Local Existence and Uniqueness) Regard the same initial value problem as in Theorem 6, but in-
stead of global Lipschitz continuity, assume that f is continuously differentiable with respect to x for all t ∈
[tinit, tfin]. Then there exists a possibly shortened, but non-empty interval [tinit, t

′
fin] with t′fin ∈ (tinit, tfin] on

which the IVP has a unique solution.

Note that for nonlinear continuous time systems – in contrast to discrete time systems – it is very easily possible
to obtain an “explosion”, i.e., a solution that tends to infinity for finite times, even with innocently looking and
smooth functions f .

Example 4 (Explosion of an ODE) Regard the scalar example f(x) = x2 with tinit = 0 and xinit = 1, and let
us regard the interval [tinit, tfin] with tfin = 10. The IVP has the explicit solution x(t) = 1/(1 − t), which is
only defined on the half open interval [0, 1), because it tends to infinity for t → 1. Thus, we need to choose some
t′fin < 1 in order to have a unique and finite solution to the IVP on the shortened interval [tinit, t

′
fin]. The existence

of this local solution is guaranteed by the above corollary. Note that the explosion in finite time is due to the fact
that the function f is not globally Lipschitz continuous, so Theorem 6 is not applicable.

Discontinuities with Respect to Time

It is important to note that the above theorem and corollary can be extended to the case that there are finitely many
discontinuities of f with respect to t. In this case the ODE solution can only be defined on each of the continuous
time intervals separately, while the derivative of x is not defined at the time points at which the discontinuities
of f occur, at least not in the strong sense. But the transition from one interval to the next can be determined by
continuity of the state trajectory, i.e. we require that the end state of one continuous initial value problem is the
starting value of the next one.

The fact that unique solutions still exist in the case of discontinuities is important because many state and
parameter estimation problems are based on discontinuous control trajectories u(t). Fortunately, this does not
cause difficulties for existence and uniqueness of the IVPs.
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Linear Time Invariant (LTI) Systems

A special class of tremendous importance are the linear time invariant (LTI) systems. These are described by an
ODE of the form

ẋ = Ax+Bu (5.4)

with fixed matrices A ∈ Rnx×nx and B ∈ Rnx×nu . LTI systems are one of the principal interests in the field
of automatic control and a vast literature exists on LTI systems. Note that the function f(x, u) = Ax + Bu is
Lipschitz continuous with respect to x with Lipschitz constant L = ‖A‖, so that the global solution to any initial
value problem with a piecewise continuous control input can be guaranteed.

For system identification, we usually need to add output equations y = Cx + Du to our model, where the
outputs y may be the only physically measurable quantities. In that context, it is important to remark that the states
are not even unique, because different state space realizations of the same input-output behavior exist.

Many important notions such as controllability or stabilizability, and observability or detectability, and con-
cepts such as the impulse response or frequency response function can be defined in terms of the matrices A,B,C
and D alone. In particular, the transfer function G(s) of an LTI system is the Laplace transform of the impulse
response can be shown to be given by

G(s) = C(sI −A)−1B +D.

The frequency response is given by the transfer function evaluated at values s = jω where j is the imaginary unit.

Zero Order Hold and Solution Map

In the age of digital control, the inputs u are often generated by a computer and implemented at the physical
system as piecewise constant between two sampling instants. This is called zero order hold. The grid size is
typically constant, say of fixed length ∆t > 0, so that the sampling instants are given by tk = k · ∆t. If our
original model is a differentiable ODE model, but we have piecewise constant control inputs with fixed values
u(t) = uk wtih uk ∈ Rnu on each interval t ∈ [tk, tk+1], we might want to regard the transition from the state
x(tk) to the state x(tk+1) as a discrete time system. This is indeed possible, as the ODE solution exists and is
unique on the interval [tk, tk+1] for each initial value x(tk) = xinit.

If the original ODE system is time-invariant, it is enough to regard one initial value problem with constant
control u(t) = uconst

ẋ(t) = f(x(t), uconst), t ∈ [0,∆t], with x(0) = xinit. (5.5)

The unique solution x : [0,∆t]→ Rnx to this problem is a function of both, the initial value xinit and the control
uconst, so we might denote the solution by

x(t;xinit, uconst), for t ∈ [0,∆t]. (5.6)

This map from (xinit, uconst) to the state trajectory is called the solution map. The final value of this short trajectory
piece, x(∆t;xinit, uconst), is of major interest, as it is the point where the next sampling interval starts. We might
define the transition function fdis : Rnx ×Rnu → Rnx by fdis(xinit, uconst) = x(∆t;xinit, uconst). This function
allows us to define a discrete time system that uniquely describes the evolution of the system state at the sampling
instants tk:

x(tk+1) = fdis(x(tk), uk). (5.7)

Solution Map of Linear Time Invariant Systems

Let us regard a simple and important example: for linear continuous time systems

ẋ = Ax+Bu

with initial value xinit at tinit = 0, and constant control input uconst, the solution map x(t;xinit, uconst) is explicitly
given as

x(t;xinit, uconst) = exp(At)xinit +

∫ t

0

exp(A(t− τ))Buconstdτ,
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where exp(A) is the matrix exponential. It is interesting to note that this map is well defined for all times t ∈ R,
as linear systems cannot explode. The corresponding discrete time system with sampling time ∆t is again a linear
time invariant system, and is given by

fdis(xk, uk) = Adisxk +Bdisuk (5.8)

with

Adis = exp(A∆t) and Bdis =

∫ ∆t

0

exp(A(∆t− τ))Bdτ. (5.9)

One interesting observation is that the discrete time system matrix Adis resulting from the solution of an LTI
system in continuous time is by construction an invertible matrix, with inverse A−1

dis = exp(−A∆t). For systems
with strongly decaying dynamics, however, the matrix Adis might have some very small eigenvalues and will thus
be nearly singular.

Sensitivities

In the context of estimation, derivatives of the dynamic system simulation are often needed. Following Theorem 6
and Corollary 1 we know that the solution map to the IVP (5.5) exists on an interval [0,∆t] and is unique under
mild conditions even for general nonlinear systems. But is it also differentiable with respect to the initial value and
control input?

In order to discuss the issue of derivatives, which in the dynamic system context are often called sensitivities,
let us first ask what happens if we call the solution map with different inputs. For small perturbations of the values
(xinit, uconst), we still have a unique solution x(t;xinit, uconst) on the whole interval t ∈ [0,∆t]. Let us restrict
ourselves to a neighborhood N of fixed values (xinit, uconst). For each fixed t ∈ [0,∆t], we can now regard
the well defined and unique solution map x(t; ·) : N → Rnx , (xinit, uconst) 7→ x(t;xinit, uconst). A natural
question to ask is if this map is differentiable. Fortunately, it is possible to show that if f is m-times continuously
differentiable with respect to both x and u, then the solution map x(t; ·), for each t ∈ [0,∆t], is also m-times
continuously differentiable with respect to (xinit, uconst).

In the general nonlinear case, the solution map x(t;xinit, uconst) can only be generated by a numerical simu-
lation routine. The computation of derivatives of this numerically generated map is a delicate issue. The reason
is that most numerical integration routines are adaptive, i.e., might choose to do different numbers of integration
steps for different IVPs. This renders the numerical approximation of the map x(t;xinit, uconst) typically non-
differentiable in the inputs xinit, uconst. Thus, multiple calls of a black-box integrator and application of finite
differences might result in very wrong derivative approximations.

Numerical Integration Methods

A numerical simulation routine that approximates the solution map is often called an integrator. A simple but very
crude way to generate an approximation for x(t;xinit, uconst) for t ∈ [0,∆t] is to perform a linear extrapolation
based on the time derivative ẋ = f(x, u) at the initial time point:

x̃(t;xinit, uconst) = xinit + tf(xinit, uconst), t ∈ [0,∆t]. (5.10)

This is called one Euler integration step. For very small ∆t, this approximation becomes very good. In fact,
the error x̃(∆t;xinit, uconst) − x(∆t;xinit, uconst) is of second order in ∆t. This motivated Leonhard Euler to
perform several steps of smaller size, and propose what is now called the Euler integration method. We subdivide
the interval [0,∆t] into M subintervals each of length h = ∆t/M , and perform M such linear extrapolation steps
consecutively, starting at x̃0 = xinit:

x̃j+1 = x̃j + hf(x̃j , uconst), j = 0, . . . ,M − 1. (5.11)

It can be proven that the Euler integration method is stable, i.e. that the propagation of local errors is bounded with
a constant that is independent of the step size h. Therefore, the approximation becomes better and better when we
decrease the step size h: since the consistency error in each step is of order h2, and the total number of steps is of
order ∆t/h, the accumulated error in the final step is of order h∆t. As this is linear in the step size h, we say that
the Euler method has the order one. Taking more steps is more accurate, but also needs more computation time.
One measure for the computational effort of an integration method is the number of evaluations of f , which for
the Euler method grows linearly with the desired accuracy.
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In practice, the Euler integrator is rarely competitive, because other methods exist that deliver the desired
accuracy levels at much lower computational cost. We discuss several numerical simulation methods later, but
present here already one of the most widespread integrators, the Runge-Kutta Method of Order Four, which we
will often abbreviate as RK4. One step of the RK4 method needs four evaluations of f and stores the results in
four intermediate quantities ki ∈ Rnx , i = 1, . . . , 4. Like the Euler integration method, the RK4 also generates a
sequence of values x̃j , j = 0, . . . ,M , with x̃0 = xinit. At x̃j , and using the constant control input uconst, one step
of the RK4 method proceeds as follows:

k1 = f(x̃j , uconst) (5.12a)

k2 = f(x̃j +
h

2
k1, uconst) (5.12b)

k3 = f(x̃j +
h

2
k2, uconst) (5.12c)

k4 = f(x̃j + h k3, uconst) (5.12d)

x̃j+1 = x̃j +
h

6
(k1 + 2k2 + 2k3 + k4) (5.12e)

One step of RK4 is thus as expensive as four steps of the Euler method. But it can be shown that the accuracy of the
final approximation x̃M is of order h4∆t. In practice, this means that the RK4 method usually needs tremendously
fewer function evaluations than the Euler method to obtain the same accuracy level.

From here on, and throughout the major part of the lecture, we will leave the field of continuous time systems,
and directly assume that we control a discrete time system xk+1 = fdis(xk, uk). Let us keep in mind, however, that
the transition map fdis(xk, uk) is usually not given as an explicit expression but can instead be a relatively involved
computer code with several intermediate quantities. In the exercises of this lecture, we will usually discretize the
occuring ODE systems by using only one Euler or RK4 step per control interval, i.e. use M = 1 and h = ∆t. The
RK4 step often gives already a sufficient approximation at relatively low cost.

5.3 Discrete Time Systems

Let us now discuss in more detail the discrete time systems that are at the basis of the control problems in the first
part of this lecture. In the general time-variant case, these systems are characterized by the dynamics

xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1 (5.13)

on a time horizon of length N , with N control input vectors u0, . . . , uN−1 ∈ Rnu and (N + 1) state vectors
x0, . . . , xN ∈ Rnx .

If we know the initial state x0 and the controls u0, . . . , uN−1 we could recursively call the functions fk in
order to obtain all other states, x1, . . . , xN . We call this a forward simulation of the system dynamics.

Definition 13 (Forward simulation) The forward simulation is the map

fsim : Rnx+Nnu → R(N+1)nx

(x0;u0, u1, . . . , uN−1) 7→ (x0, x1, x2, . . . , xN )
(5.14)

that is defined by solving Equation (5.13) recursively for all k = 0, 1, . . . , N − 1.

The inputs of the forward simulation routine are the initial value x0 and the controls uk for k = 0, . . . , N − 1.
In many practical problems we can only choose the controls while the initial value is fixed. Though this is a very
natural assumption, it is not the only possible one. In optimization, we might have very different requirements: We
might, for example, have a free initial value that we want to choose in an optimal way. Or we might have both a
fixed initial state and a fixed terminal state that we want to reach. We might also look for periodic sequences with
x0 = xN , but do not know x0 beforehand. All these desires on the initial and the terminal state can be expressed
by suitable constraints. For the purpose of this manuscript it is important to note that the fundamental equation
that is characterizing a dynamic optimization problem are the system dynamics stated in Equation (5.13), but no
initial value constraint, which is optional.
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Linear Time Invariant (LTI) Systems

As discussed already for the continuous time case, linear time invariant (LTI) systems are not only one of the
simplest possible dynamic system classes, but also have a rich and beautiful history. In the discrete time case, they
are determined by the system equation

xk+1 = Axk +Buk, k = 0, 1, . . . , N − 1. (5.15)

with fixed matrices A ∈ Rnx×nx and B ∈ Rnx×nu . An LTI system is asymptotically stable if all eigenvalues of
the matrix A are strictly inside the unit disc of the complex plane, i.e. have a modulus smaller than one. It is easy
to show that the forward simulation map for an LTI system on a horizon with length N is given by

fsim(x0;u0, . . . , uN−1) =


x0

x1

x2

...
xN

 =


x0

Ax0 +Bu0

A2x0 +ABu0 +Bu1

...
ANx0 +

∑N−1
k=0 AN−1−kBuk


In order to check controllability, due to linearity, one might ask the question if after N steps any terminal state xN
can be reached from x0 = 0 by a suitable choice of control inputs. Because of

xN =
[
AN−1B AN−2B · · · B

]︸ ︷︷ ︸
=CN


u0

u1

...
uN−1


this is possible if and only if the matrix CN ∈ Rnx×Nnu has the rank nx. Increasing N can only increase the rank,
but one can show that the maximum possible rank is already reached for N = nx, so it is enough to check if the
so called controllability matrix Cnx has the rank nx.

Eigenvalues and Eigenvectors of LTI Systems

Every square matrix A ∈ Rnx×nx can be brought into the Jordan canonical form A = QJQ−1 with non-singular
Q ∈ Cnx×nx and J block diagonal, consisting of m-Jordan blocks Ji. Thus, it holds that

J =


J1

J2

. . .
Jm

 with Ji =


λi 1

λi 1
. . . . . .

λi

 .
Many of the Jordan blocks might just have size one, i.e. Ji = [λi]. To better understand the uncontrolled system
evolution with dynamics xk+1 = Axk and initial condition x0 = xinit, one can regard the solution map xN =
ANx0 in the eigenbasis, which yields the expression

xN = Q JN (Q−1x0)

First, it is seen that all Jordan blocks evolve independently, after the initial condition is represented in the eigenba-
sis. Second, a simple Jordan block Ji will just result in the corresponding component being multiplied by a factor
λNi . Third, for nontrivial Jordan blocks, one obtains more complex expressions with N upper diagonals of the
form

JNi =



λNi NλN−1
i · · · 1

λNi NλN−1
i

. . .

. . .

λNi


.
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If one eigenvalue has a larger modulus |λi| than all others, the Jordan block JNi will grow faster (or shrink slower)
than the others for increasing N . The result is that the corresponding eigenvector(s) will dominate the final state
xN for large N , while all others “die out”. Here, the second largest eigenvalues will result in the most slowly
decaying components, and their corresponding eigenvectors will keep a visible contribution in xN the longest.

Interestingly, complex eigenvalues as well as eigenvectors appear in complex conjugate pairs. If an eigenvalue
λi is complex, the (real part of) the corresponding eigenvector will perform oscillatory motion. To understand the
behaviour of complex eigenvectors, let us regard a complex conjugate pair of simple eigenvalues λi and λj = λ̄i,
and their eigenvectors vi, vj ∈ Cnx , i.e. Avi = λivi and Avj = λ̄ivj . It is easy to see that, because A is real,
vj = v̄i is a possible choice for the eigenvector corresponding to λ̄i. Then holds that Re{vi} = 1

2 (vi + vj).
Therefore,

AN Re{vi} =
1

2
(λNi vi + λNj vj) =

1

2
(λNi vi + λ̄Ni v̄i) = Re{λNi vi}.

If we represent λi as λi = reφi (where the i in the exponent is the imaginary unit while the other i remains just
an integer index), then λNi = rNeNφi. If φ is a fraction of 2π, there is an N such that Nφ = 2π, and after N
iterations we will obtain the same real part as in the original eigenvector, but multiplied with rN . We can conclude
that the real part of the eigenvector to a complex eigenvalue reφi performs a form of damped or growing oscillatory
motion with period duration N = 2π/φ and growth constant r.

Affine Systems and Linearizations along Trajectories

An important generalization of linear systems are affine time-varying systems of the form

xk+1 = Akxk +Bkuk + ck, k = 0, 1, . . . , N − 1. (5.16)

These often appear as linearizations of nonlinear dynamic systems along a given reference trajectory. To see this,
let us regard a nonlinear dynamic system and some given reference trajectory values x̄0, . . . , x̄N−1 as well as
ū0, . . . , ūN−1. Then the Taylor expansion of each function fk at the reference value (x̄k, ūk) is given by

(xk+1 − x̄k+1) ≈ ∂fk
∂x

(x̄k, ūk)(xk − x̄k) +
∂fk
∂u

(x̄k, ūk)(uk − ūk) + (fk(x̄k, ūk)− x̄k+1)

thus resulting in affine time-varying dynamics of the form (5.16). Note that even for a time-invariant nonlinear
system the linearized dynamics becomes time-variant due to the different linearization points on the reference
trajectory.

It is an important fact that the forward simulation map of an affine system (5.16) is again an affine function of
the initial value and the controls. More specifically, this affine map is for any N ∈ N given by:

xN = (AN−1 · · ·A0)x0 +

N−1∑
k=0

(
ΠN−1
j=k+1Aj

)
(Bkuk + ck) .

5.4 Input Output Models
So far, all systems represented in this chapter used the same form of systems, called the state space representa-
tion, and given by Equation (5.13) in the case of discrete systems, and by Equation (5.1) in the continuous case.
This equations provide the internal state of a system, given a series of inputs and past internal states, and this
representation is interesting when the state of the system represents a meaningful source of information (chemical
composition in a chemistry process, velocity of a car, etc.).

Nevertheless, there are some systems where the only information required is just the output of the system,
so a representation of such a value without considering any internal states is the main idea of the Input-Output
representation. This model is shown by Equation (5.17) in the case of a continuous time system and Equation (5.18)
in the discrete time, where y represents the output variable of the system, and as it can be seen it depends only on
the output values and control values in the past, but not on an internal state.

∂ny

∂tn
= f(y,

∂y

∂t
,
∂2y

∂t2
, . . . ,

∂n-1y

∂tn-1 , u,
∂u

∂t
,
∂2u

∂t2
), . . . ,

∂nu

∂tn
) (5.17)

y(k) = f(u(k), . . . , u(k − n), y(k − 1), . . . , y(k − n)) (5.18)
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5.4.1 Transformation from Input-Output to State Space model

One of the features that Input-Output models provide, is that they can be easily transformed to a equivalent State
Space Model. For instance, considering the discrete time equation of a Input-Output model given by (5.18). This
system can easily be transformed to an equivalent State Space model, with a transformation that can be seen below:

x(t+ 1) = f(x(t), u(t)) =



h(u(t), . . . , y(t−1) . . .)
u(t)

y(t− 1)
u(t− 1)

...
y(t− n+ 1)
u(t− n+ 1)


y(t) = g(x(t), u(t)) = h(u(t), . . . , y(t−1) . . .)

(5.19)

However, the transformation from a State Space to a Input-Output Model is not always possible, and it is
limited to some specific examples, e.g. LTI systems.

5.4.2 LTI systems as Input-Output Models

One of the characteristics of an Input-Output model is that any LTI system can be always represented as an Input-
Output model, and this model can be brought in turn to the unique representation of the system as a transfer
function G(s). This can be seen on Equation 5.20 (representing the LTI input output model) and Equation 5.21
(representing the transfer function in continuous time). Note that the change of sign in a0, a1, . . . is done by
convention.

∂ny

∂tn
= −a0y + a1

∂y

∂t
− a2

∂2y

∂t2
− . . .− an-1

∂n-1y

∂tn-1 + bou+ b1
∂u

∂t
+ b2

∂2u

∂t2
+ . . .+

∂nu

∂tn
) (5.20)

G(s) =
b0 + b1s+ . . .+ bns

n

a0 + a1s+ . . .+ an-1sn-1 + sn
(5.21)

Furthermore, considering the most general expression for a discrete time LTI system, the transfer function
using the z-transform can be derived. This two concepts can be in the following two equations:

a0y(k) + . . .+ anay(k − na) = b0u(k) + . . .+ bnbu(k − nb)
na, nb < 0, n = max(na, nb), t ∈ [n+ 1, n+ 2, . . .]

Initial conditions: y(1) = y1, . . . , y(n) = yn

u(1) = u1, . . . , u(n) = un.

(5.22)

G(z) =
b0 + b1z

−1 + . . .+ bnbz
−nb

a0 + a1z−1 + . . .+ anaz
−na

(5.23)

The expression given by (5.23) is also know as a Polynomial Model, and we will discuss them later on sec-
tion 5.5.1. Furthermore, using the stated definition of n = max(na, nb), (5.23) can be transformed in the more
general transfer function expression (just adding the necessary zero coefficients) given by the next equation:

G(z) =
b0 + b1z

−1 + . . .+ bnz
−n

a0 + a1z−1 + . . .+ anz−n
=

b0z
n + b1z

n−1 + . . .+ bn
a0zn + a1zn−1 + . . .+ an

(5.24)
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5.5 Dynamic System Models in Discrete Time
A dynamic system model can be defined as the set of governing equations that describe the behaviour of the
system, and which allows the computation of a sequence of system outputs y(1), . . . , y(N) for any horizon length
N , provided that the sequence of inputs u(1), . . . , u(N) as well as the initial conditions of the system are known.

-
input u(k)

Dynamic System

6

(initial conditions)

-
output y(k)

Generally, when speaking of dynamic system models for discrete time, there has been theory developed which
models system in many different ways. However, for the scope of this course the distinction between different
models has been narrowed to just 3: Deterministic Models, Models with Measurement Noise (a.k.a. Output Errors
Model), Models with Stochastic Disturbances (a.k.a. Equation Errors Models.)

5.5.1 Deterministic Models
As the name already states, a deterministic model is a model which establishes a set of non-stochastic governing
equations, meaning that the output of the system y or the state x can be obtained with absolutely certainty, provided
that the inputs of the system u(1), . . . , u(N), the previous outputs y(1), . . . , y(N) or state x(n− 1) and the initial
conditions are known. Examples of such a models are the already presented State Space Model:

x(t+ 1) = f(x(k), u(k))

y(k) = g(x(k), u(k)), t ∈ [1, 2, . . .],

Initial conditions: x(0) = xinit.

(5.25)

or the previously introduced Input-Output model:

y(k) = h(u(k), . . . , u(k − n), y(k − 1), . . . , y(k − n)), k ∈ [n+ 1, n+ 2, . . .]

Initial conditions: y(1) = y1, . . . , y(n) = yn

u(1) = u1, . . . , u(n) = un.

(5.26)

Finite Impulse Response (FIR) Models

In section 5.4, the Polynomial Model has been introduced as a representation of LTI systems in a Input-Output
model which could be then transformed to a Transfer Function. One special case of this kind of model, which also
is an example of a Determinist Model, is the Finite Impulse Response (FIR) model.

The response of a general system can be usually defined as the set of the outputs of the system [y(1), . . . , y(N)],
produced by a given set of past inputs [u(1), . . . , u(N)], the previous outputs [y(1), . . . , y(N)] and a given initial
conditions.

In this case, and as the name states, the response of the system is finite, meaning that the output of the system
at any moment k is a weighted sum of the nb previous inputs [u(k − nu, . . . , u(k)], therefore, if the input is set to
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0, after nb time intervals the output of the system will also be zero, making the response of the system to be finite.
The general equation of a FIR system can be see on Equation 5.27, and the its transfer function on Equation 5.28.
Note that using the same nomenclature than in 5.4, a FIR system can also be defined as a general LTI system where
na = 0 (na was the number of past outputs entering the system as inputs).

y(k) = b0u(k) + . . .+ bnbu(k − nb) (5.27)

G(z) = b0 + b1z
−1 + . . .+ bnbz

−nb =
b0z

nb + b1z
nb−1 + . . .+ bnb

znb + 0 + . . .+ 0
(5.28)

Auto Regressive Models with Exogenous Inputs (ARX) Models

This kind of model is a generalisation of the FIR, representing a system where the output is a weighted sum of the
past inputs [u(1), . . . , u(N)] and past outputs [y(1), . . . , y(N)], and it was already defined by:

a0y(k) + . . .+ anay(k − na) = b0u(k) + . . .+ bnbu(k − nb)
na, nb < 0, n = max(na, nb), t ∈ [n+ 1, n+ 2, . . .]

Initial conditions: y(1) = y1, . . . , y(n) = yn

u(1) = u1, . . . , u(n) = un.

(5.29)

G(z) =
b0z

n + b1z
n−1 + . . .+ bn

a0zn + a1zn−1 + . . .+ an
(5.30)

This models are also known as infinite impulse response models due to the fact that the dependency on the
previous inputs, makes the system show always a non-zero value on the output (with the exception of the trivial
case the the output is 0 at the beginning and no further input is applied).

Another kind of model is the autoregressive (AR) model, which is completely autonomous, meaning that the
response does not depend on the input. Such systems have no transfer function since the numerator of a classic
transfer function using a z-transform would be always 0. A example of system that could be mode with an AR
model would be the Fibonacci numbers: [1, 1, 2, 3, 5, 8, 13, 21, . . .]. The equation of the system is represented by
5.31.

y(k) = −a1y(k − 1)− . . .− anay(k − na) (5.31)

Simulation of Deterministic Models

One of the best features of a deterministic model is that the simulation of the system is very easy to obtain given
the initial conditions xinit, the control trajectory of the system U , and the system parameters p. In particular, using
any of the forward simulation methods presented at the beginning of section 5.3 (Euler or RK4), the computation
of the outputs [y(1), . . . , y(N)] can be easily obtained. This mapping from U , p and xinit to a general output y(k)
is represented by the function M on Equation 5.32.

y(k) = M(k;U, xinit, p) (5.32)

5.5.2 Model with Measurement Noise (Output Errors)

In reality, dynamic systems are far from being deterministic. Instead we have the so-called Stochastics model, and
below the 3 main differences respect to a deterministic one are remarked:

• In reality, we always have stochastic noise ε(k), e.g. external disturbances or measurement errors.

• also, we have unknown, but constant system parameters p.

• measured outputs y(k) depend on both, ε(k) and p:
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-input u(k) Dynamic System

?

stochastic noise ε(k)

6

initial conditions

6

parameters p

-output y(k)

One special case of Stochastic Models are models with the error only modelled in the output, and where the
error ε(k) can be assumed as additive measurement noise. In this case, the equation of the output can be defined
as:

y(k) = M(k;U, xinit, p) + ε(k) (5.33)

where M(k;U, xinit, p) can be the deterministic model used in the previous section. The picture below illus-
trates this concept in a graphical manner:

-input u(k)
Dynamic System ?

measurement noise ε(k)

+

6

initial conditions

6

parameters p

-output y(k)

This special case is known as Output Error (OE) model, and assuming i.i.d. Gaussian noise on the mea-
surements, it is easy to recognized that a maximum likelihood estimate for θ = (x>init, p

>)> can be obtained by
nonlinear least squares:

θML = arg min
θ

N∑
k=1

( y(k)−M(k;U, xinit, p) )2 (5.34)

where U = (u(1), . . . , u(N))>, and xinit represents initial conditions. This minimisation problem is known
as Output Error minimisation.

Its main advantage is that assuming that there is only noise on the output is often a realistic noise assumption.
Of course, there are many systems where this assumption is not valid, and where noise should also be modeled on
e.g. the input of the system.
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The main disadvantage of this model is that M is typically nonlinear, thus non-convex, and finding a global
minimum is often an impossible task.

Output Error Minimization for FIR Models

A nice property of FIR models is that when using the Output Error representation, they lead to convex problems,
so a global minimum can be found.

Let θ = p = (b0, . . . , bnb)
> be the unknown parameter that must be estimated. A FIR model with output error

can be stated as:

y(k) = (u(k), u(k−1), . . . , u(k−nnb)) · θ + ε(k) (5.35)

Therefore, defining k ≥ nb + 1, the deterministic model of this optimisation problem can be expressed as
M(k;U, xinit, p) = (u(k), u(k−1), . . . , u(k−nnb)) · θ, and the minimisation problem for a generic FIR model is
the linear least squares problem stated below:

min
θ

N∑
k=nb+1

( y(k)− (u(k), u(k − 1), . . . , u(k − nnb))θ )2 (5.36)

The main disadvantage of this problem is that even though we could represent our system by a FIR model, they
often need a very high dimension nb to obtain a reasonable fit. As a consequence ARX models are usually used
instead.

5.5.3 Model with Stochastic Disturbances (Equation Errors)
As was said previously, the assumption of having only noise at the output is not always correct. Sometimes it
is more correct to assume that stochastic noise ε(k) can enter also the model internally, and not only at output
equation. Furthermore, the measured outputs y(k) depend on both ε(k) and p. A schematic representation was
shown at the beginning of Section 5.5.2.

Stochastic Models

It can be assumed that the noise is i.i.d., and that these noise terms ε(k) enter the model as a normal input, but as a
random value. In this way, we can define the different stochastic models. First, we introduce the equivalent model
to the State Space model, the so-called Stochastic State Space model:

x(t+ 1) = f(x(k), u(k), ε(k))

y(k) = g(x(k), u(k), ε(k))

for t = 1, 2, . . .

and secondly the equivalent Stochastic Input Output Model:

y(k) = h(u(k), . . . , u(k−n), y(k−1), . . . , y(k−n), ε(k), . . . , ε(k−n))

for k = n+ 1, n+ 2, . . .

Equation Error Models

One special case for when the i.i.d. noise ε(k) enters the model is the case when it enters the input-output equation
as additive disturbance:

y(k) = h(p, u(k), . . . , u(k−n), y(k−1), . . . , y(k−n)) + ε(k)

for k = n+ 1, n+ 2, . . .

In this case, if the noise is also Gaussian, a maximum likelihood algorithm can directly solve the optimisation
problem and estimate the unknown parameter vector θ = p. The optimal solution is defined by:
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θML = arg min
θ

N∑
k=n+1

( y(k)− h(p, u(k), . . . , y(k−1), . . .)) )2 (5.37)

where u(k) and y(k) are the known input and output measurements, and where the algorithm minimises
the sum of the so called equation error or prediction error, which is represented by the difference of y(k) −
h(p, u(k), . . . , y(t−1), . . .)).

According to the previous definition, it is obvious to understand why the problem defined by (5.37) is also
known as Prediction error minimisation (PEM).

Such a problem is convex if p enters linearly in f , i.e. the model is linear-in-the-parameters (LIP, and in
this case, because of the convexity of the problem, the prediction error minimization is globally solvable for LIP
models.

Linear In the Parameter models (LIP)

A general form of LIP model with equation error noise is given below:

y(k) =

d∑
i=1

θi φi(u(k). . . . , y(k − 1), . . .) + ε(k) (5.38)

where φ1, . . . , φd are called the basis of the LIP model. They are the coefficients that enter the above equation
linearly. In the case of a general Input-Output model, the basis depends on the input u and the output y.

Another way to express the model is given by:

y(k) = ϕ(k)>θ + ε(k) (5.39)

where ϕ(k) = (φ1(·), . . . , φd(·))> is the regression vector and it is form by the different basis of the LIP
model. Considering this last expression, the prediction error minimisation (PEM) problem then can be expressed
as:

min
θ

N∑
k=n+1

( y(k)− ϕ(k)>θ) )2

︸ ︷︷ ︸
=‖yN−ΦNθ‖22

(5.40)

which can be solved using the well-known analytical solution for Linear Least Square: θ∗ = Φ+
NyN

Special Case: LIP-LTI Models with Equation Errors (ARX)

A general ARX model with equation errors can be stated by Equation (5.41). This model is both LTI and LIP, thus
combining the best of two worlds:

a0y(k) + . . .+ anay(k−na) = b0u(k) + . . .+ bnbu(k−nb) + ε(k). (5.41)

In order to have a determined estimation problem, a0 has to be fixed, otherwise the number of optimal solutions
would be infinite. Therefore, fixing a0 = 1, and using θ = (a1, . . . , ana , b0, . . . , bnb)

> as the parameter estimator
vector, then the regression vector is defined as:

ϕ(k) = (−y(k−1), . . . ,−y(k−na), u(k), . . . , u(k−nb))> (5.42)

leading to the unique and optimal solution provided by the LLS algorithm:

y(k) = ϕ(k)>θ + ε(k) (5.43)
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5.5.4 Other Stochastic System Classes
Besides the two explained models, there are plenty of different stochastic models out there. Some of the most
well-known are:

• Auto-regressive moving average with eXogeneous input (ARMAX), where the noise term ε(k) goes through
a FIR filter before becoming part of the equation error:

a0y(k) + . . .+ anay(k−na)

=b0u(k) + . . .+ bnbu(k−nb) + ε(k) + c1ε(k−1) + . . . cncε(k−nc)

• Auto-regressive moving average models without inputs (ARMA):

a0y(k) + . . .+ anay(k−na) = ε(k) + c1ε(k−1) + . . . cncε(k−nc)

Where the ci represent the noise coefficients, and when estimating them, we will have to use nonlinear least
squares, because ci are multiplied with the unknown noise terms ε(k − i).
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Chapter 6

Parameter Estimation with Dynamic
System Models

Let’s do a short summary of the previous chapter, which will help us to better understand this chapter: General
Stochastic Models are a type of model that included a variable noise term ε(k). Such stochastic noise ε(k) enters
the model either internally or in the output equation. The model has the output y(k), which depends on the initial
values: u(k), p, and ε(k). A diagram of the model that includes the error internally (Equation Error) is depicted
below:

-
input u(k)

Dynamic System

?

stochastic noise ε(k)

6

initial conditions

6

parameters p

-
output y(k)

The noise terms ε(k) are i.i.d. noise, and they enter the model as stochastic input. In the case of Stochastic
State-Space Models, the model is:

x(k + 1) = f(x(k), u(k), ε(k))

y(k) = g(x(k), u(k), ε(k)) for k = 1, 2, . . .

whereas for Input-Output models, it is:

y(k) = h(u(k), . . . , u(k−n), y(k−1), . . . , y(k−n), ε(k), . . . , ε(k−n))

for k = n+ 1, n+ 2, . . .

In the case of additive measurement noise ε(t), a deterministic model can be used:

y(k) = M(k;U, xinit, p) + ε(k)
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A model schematic is presented below:

-input u(k)
Dynamic System ?

measurement noise ε(k)

+

6

initial conditions

6

parameters p

-output y(k)

6.1 Pure Output Error (OE) Minimization

When we can assume i.i.d. Gaussian noise that is only affecting the output, a maximum likelihood estimate for
θ = (x>init, p

>)> can be obtained by non-linear least-squares using the following algorithm:

θML = arg min
θ

N∑
k=1

( y(k)−M(k;U, xinit, p) )2 (6.1)

Where U = (u(1), . . . , u(N))> and xinit represents the initial conditions. This algorithm has several disad-
vantages:

1. Usual models are non linear and non-convex, global minimum can not be guaranteed.

2. Unstable systems are very difficult to identify using this kind of model.

3. In reality, also the inputs of the systems have noise, which is not accounted for in this model.

6.1.1 FIR models: Convex minimization

FIR models lead to convex OE minimization problems. We already showed in a previous Chapter that when we
choose the unknown estimator parameter as θ = p = (b0, . . . , bnb)

>, the FIR model with output error predicts
measurements which are modelled by the following equation:

y(k) = (u(k), u(k−1), . . . , u(k−nnb)) · θ + ε(k). (6.2)

where the model of the system is given by M(k;U, xinit, p) = (u(k), u(k−1), . . . , u(k−nnb)) · θ, and the OE
minimization problem for an FIR model can be modelled as the linear least squares problem:

min
θ

N∑
k=nb+1

( y(k)− (u(k), u(k − 1), . . . , u(k − nnb))θ )2 (6.3)

The main disadvantage of FIR models is that they often lead to a high dimension number of inputs nb in order
to obtain a reasonable fit. Furthermore, with FIR models no physical interpretation possible.
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6.2 Models with Input and Output Errors
To model input and output errors, we make the simple assumption that we have two noise terms εu(t) and εy(t)
affecting the input and the output of our deterministic model:

y(k) = M(k;U+εuN , xinit, p) + εy(k) (6.4)

-measured input
u(t)

?

input noise εu(t)

+
-

true
input

ũ(t)
System ?

output noise εy(t)

+

6

initial conditions

6

parameters p

-

measured output y(t)

For this particular problem, assuming once again i.i.d. Gaussian noise on both, inputs and outputs, with variances σ2
u for

the inputs and σ2
y for the outputs, it is straightforward to establish the ML estimation problem for the unknown parameter vector

θ = (x>init, p
>, εuN

>)>. The noise vector is defined by εuN = (εu(1), . . . , εu(N))>. This is a non-linear least squares problem,
given by:

min
θ

N∑
k=1

1

σ2
y

(y(k)−M(k;U + εuN , xinit, p))
2 +

1

σ2
u

(εu(k))2 (6.5)

Making the transformation of θ → θ̂, where the θ̃ = (x>init, p
>, Ũ>)>, then the equation stated before can be written as:

min
θ̃

N∑
k=1

1

σ2
y

(y(k)−M(k; Ũ , xinit, p))
2 +

1

σ2
u

(u(k)− ũ(k))2 (6.6)

In contrast to Output-Error Models, Input-Output Models are more complete and accurate because they take into account
the input noise. They can better deal with unstable systems.
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Chapter 7

Nonparametric and Frequency Domain
Identification Methods

As seen in the previous Chapter, dynamics system models have inputs u(t) and outputs y(t) the can be measured. We assume
i.i.d. noise ε(t) that disturbs our experiments and an unknown system model illustrated below:

-
input u(k)

Dynamic System

?

stochastic noise ε(k)

6

initial conditions

6

parameters p

-
output y(k)

In nonparametric identification we do not model a physical representation of the system but we consider the model as a
”black box”. We rather directly want to obtain the transfer function of the system. Thus, in this approach neither the parameters
or the initial conditions matter, and we can see such a model depicted below:

61



i
i

“msi” — 2015/3/10 — 18:51 — page 62 — #62 i
i

i
i

i
i

62 CHAPTER 7. NONPARAMETRIC AND FREQUENCY DOMAIN IDENTIFICATION METHODS

-
input u(k)

Dynamic System

?

stochastic noise ε(k)

-
output y(k)

As a short introductory summary, the main feature of a nonparametric identification problem as follows:

• Its aim is to make a prediction of the system without doing any real modelling work, forgetting the physical laws involved
in the system’s behaviour.

• The approach that follows is to choose a generic model class and then identify the ”black-box” model

• For Linear time invariant (LTI) systems we get the nonparametric model by identifying the impulse response function
(see next section).

7.1 Nonparametric identification on LTI systems
A continuous time LTI system is a system that allows us to compute, for any horizon [0, T ] and control trajectory u(t) for
t ∈ [0, T ], the output trajectory y(t) for t ∈ [0, T ]. Typically, we assume the initial conditions to be zero. Moreover, it is very
easy to transform a continuous LTI system to a discrete one, and Matlab provide a easy interface to do so.

As already mentioned before, for LTI systems it is sufficient to identify the impulse response function to get the transfer
function of the system. Another tool to analyse the behaviour of an LTI system is the Bode plot diagram.

7.1.1 The impulse response and transfer function
If the impulse response function g(t) is known, the output for any input signal u(t) can be computed by a convolution operation.
Let y(t) be the output for a given input u(t), and g(t) be the impulse response, then the output can be calculated as follows:

y(t) =

∫ ∞
0

g(τ)u(t− τ)dτ (7.1)

By transforming the inputs and impulse response functions into the Laplace domain, we get the output in Laplace domain
by a simple multiplication:

Y (s) = G(s)U(s) (7.2)

where G(s) is the transfer function that characterises the system completely. It can be obtained directly with the Laplace
transform of the impulse response:

G(s) =

∫ ∞
0

e−stg(t)dt (7.3)

where s ∈ C, and G : C → C. As an example, we can take a look at the Impulse response and the step response of the
transfer function G(s) = 1

a+s
, which are illustrated in Figure 7.1 and 7.2.
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Figure 7.1: Impulse response for G(s) = 1
a+s

7.1.2 Bode diagram
Bode diagrams are a way to visualize the transfer function G(s). This kind of diagram shows the values of G(jω) for all
positive values of ω (where j is the imaginary unit, and ω is measured in rad/s and represented the frequency of the input u(t).

The diagram consists of two parts, a magnitude and a phase plot, both with logarithmically spaced frequencies ω on the
x-axis. The magnitude plot shows the magnitudes |G(jω)| also in a logarithmically scale (log-log plot). However, the phase
plot shows the argument argG(jω) of the complex number G(jω), i.e. its angle in the complex plane, in a normal scale.

A Bode Diagram can be easily obtained inn MATLAB using the command bode, which can generate the Bode diagram
of a known system. As an example, we can take a look on the Bode Plots of the transfer function G(s) = 1

a+s
, which is

represented in Figure 7.3
This plot is a different way to look at the system, but it is also very representative. It represent the behaviour of the system

for different frequencies. In the example plot, we see how the output is attenuated and the phase shifted at high frequencies.

Bode diagram from Frequency Sweeps

One of the exciting things of LTI system theory is that whenever the system is excited with a sinusoidal input, the output will
be always sinusoidal. However, the sinus at the output is shifted in phase and its amplitude is modified.

u(t) = A · sin(ω · t), y(t) = ‖G(j · ω)‖A · sin(ω · t+ α) (7.4)

The good thing of Bode plots is that they allow for any frequency ω the calculation of the phase shift α and amplitude
modification. A frequency sweep goes trough all frequencies ω, waits till transients die out and records phase and magnitude
for all frequencies. This method is not efficient, since it consumes a lot of time waiting in each iteration for the transients to die
out.

7.1.3 Discrete time LTI systems
Recall from Section 5.4 the definition of a discrete LTI system. It is a system with discrete input u(k) and discrete output y(k),
with a time difference between the samples equal to the sampling time ∆T . Its most general expression is defined by:

a0y(k) + . . .+ anay(k − na) = b0u(k) + . . .+ bnbu(k − nb)
na, nb < 0, n = max(na, nb), t ∈ [n+ 1, n+ 2, . . .]

Initial conditions: y(1) = y1, . . . , y(n) = yn

u(1) = u1, . . . , u(n) = un.

(7.5)
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Figure 7.2: Step response for G(s) = 1
a+s

In Section 5.4 we also saw the structure of its transfer function, which was defined by:

G(z) =
b0 + b1z

−1 + . . .+ bnbz
−nb

a0 + a1z−1 + . . .+ anaz
−na

(7.6)

however back then, we did not show how to compute such a function, and that is something that we look in detail in this
section.

The main idea is that if the so-called discrete time impulse response values g(0), g(1), . . . are known, the general output
can be computed by a linear combination of past inputs using the convolution equation presented before, but adapted for the
discrete time (

∫
→
∑∞):

y(t) =

∞∑
k=0

g(k)u(t− k)dτ (7.7)

In the discrete time domain, the s-transform replaces the Laplace-transform, and in the so called z-domain, a convolution
translates to a multiplication of the z-transforms:

Y (z) = G(z)U(z) (7.8)

Where the z-transform of any signal, like g, u, y can be defined as:

G(z) :=

∞∑
t=0

z−tg(t) (7.9)

Remember the difference between FIR and IRR system: we have a finite impulse response (FIR) models if and only if
g(k) has finitely many non-zero values (the impulse response is finite), otherwise it means that the model is an infinite impulse
response (IIR).

Experimental method to obtain impulse response in discrete time

From a mathematical point of view, the impulse response of a system is nothing else but the derivative of the step response.
Therefore, a way to compute the impulse response of the system is to compute the step response (which is typically easy):

h(t) =

t∑
k=0

g(k) · u(t− k) ·∆T =

t∑
k=0

g(k) ·∆T → g(t) =
h(t)− h(t− 1)

∆T
(7.10)
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Figure 7.3: Bode plot for G(s) = 1
a+s

Discrete time Body diagrams

A discrete time Bode diagram shows the values of the complex function G(z) on the unit circle (instead of the imaginary axis
as in the Laplace-domain), i.e. z = ejωT where T is the sampling time.

For values ω > 2π
T

, the values of z are repeated. In fact, only the values on the upper semi-circle are plotted, up to the
so-called Nyquist frequency ωmax = π

T
, so that the Bode diagram has a limited range of ω (by contrast to continuous time).

This Nyquist frequency is the base of the Nyquist, Theorem, which establishes the maximum input frequency of any discrete
system.

Finally it is important to note that G(ejωT ) is given by:

G(ejωT ) :=

∞∑
k=0

e−jkωT g(k) (7.11)

This expression looks similar to the definition of the discrete Fourier Transform (DFT or FFT), that is introduced in the
following chapter.

7.2 The Discrete Fourier Transform
Everything we have defined in the previous section lead to the so-called transfer function, which when represented on the
Laplace-domain or z-domain, lead to the so call Frequency Response Function (FRF).

Basically the aim of a nonparametric identification on a LTI problem is to a get transfer function G(s), where the magni-
tudes and phases of G(jω) for different positive frequencies ω created the Bode Diagram. We also saw a fundamental fact of
LTI systems: sinusoidal inputs u(t) = Re{U · ejωt} lead to sinusoidal outputs y(t) with a phase shift and a new magnitude
described by G(jω):

y(t) = Re{G(jω) · U · ejωt} = |G(jω)| · U · Re{ej[ωt+argG(jω)]} (7.12)

and precisely for this reason, G(jω) is called the Frequency Response Function (FRF). It is important to note that all this
concept explaining during this course is referred only for LTI system. For non-linear or time dependant systems, the frequency
behaviour is more difficult to obtain.

We can also recall from the last section the definition of a Sine Wave Testing (a.k.a. Frequency Seep). Remember that one
way to obtain G(jω) for a specific frequency ω was to use a sine wave u(t) = U0 sin(ωt) as input and record the magnitude
Y0 and the phase shift φ of y(t) = Y0 sin(ωt+ φ) to form the following expression:

G(jω) =
Y0

U0
ejφ
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In the case of a frequency sweep, the previous procedure would be repeated through all frequencies ω, waiting until
transients had died out, and recording the magnitude and phase of the output for each frequency. The main disadvantage of this
procedure is that for each new frequency, we have to wait until transients died out, so that the total computation time is very
long. The scope of this section is to introduce the Fourier Transform to find a more efficient way to estimate the FRF.

Different denominations can be found on the literature, among them one of the most used are estimated transfer function
(ETF) (Robin) or empirical transfer function estimate (ETFE) (L. Ljung).

7.2.1 Laplace vs Fourier Transform
Before entering the definition of the Fourier transform it is important to see the differences between the Laplace and the Fourier
transform. In many fields are used in place of each other because they represent the same thing, however there are subtle
differences that we would like to point out.

We can recall from the previous section that G(s) = Y (s)
U(s)

, where the Laplace transform G(s) was defined for any g(t),
g(t) that was defined as 0 for t < 0, as:

G(s) :=

∫ ∞
0

g(t)e−stdt =

∫ ∞
−∞

g(t)e−stdt (7.13)

where in the case of using the Laplace transform for the Frequency Response FunctionG(jω), we only need pure imaginary
values s = jω, for frequency ω, and therefore the final expression is defined by:

G(jω) =

∫ ∞
−∞

g(t)e−jωtdt (7.14)

This last expression is identical to the Fourier Transform (FT), defined for any function f : R→ R by

F{f}(ω) :=

∫ ∞
−∞

f(t)e−jωtdt (7.15)

With that in mind we can go a bit deeper on the similarity and the subtle difference between them:

1. Both transformations basically contain the same information.

2. Both transform a time signal f(t) from the time domain into frequency domain.

3. Both transformations have inverse transformations that give the original time signal back.

4. Both transformations generate complex valued functions.

5. Laplace transform has complex input argument s ∈ C, while Fourier transform has real ω

6. For Laplace transform, all input signals are by definition zero for t < 0, while Fourier transform deals with functions
defined for any t ∈ R (i.e. functions with infinite support)

7. Laplace transform is often used by engineers, Fourier ransform more often used by mathematicians and physicists

7.2.2 Inverse Fourier Transform
Defining the Fourier transform of the function f(t) as F (ω) = F{f}(ω), then f(t) can be recoverd by inverse Fourier
transformation F−1 given by:

f(t) = F−1{F}(t) :=
1

2π

∫ ∞
−∞

F (ω)ejωtdω (7.16)

It is important to remark the similarity of normal and inverse FT: just the sign in the exponent and the factor are different
(some definitions even use twice the same factor, 1√

2π
, to make both expressions completely symmetric). Furthermore it is

clear that the inverse FT can be used to construct the inverse Laplace transform, since they basically are the same.
One interesting related fact to the Fourier transform is that the Dirac-delta function is the superposition of all frequencies

with equal weight:

δ(t) =
1

2π

∫ ∞
−∞

ejωtdω (7.17)

expression that also represent the inverse Fourier transform of a function in a frequency domain representing the whole
spectre with the same magnitude for every frequency.
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7.2.3 Fourier Transform examples
In the Figure 7.2.3 we can see some of the most well-known functions on the time and frequency domain. Note that the first
example is exactly the Dirac-delta case explained before.

The second one is the impulse function that leads to the sync function on the frequency domain. Notice that the window
width on the time domain is inversely proportionally to the window width on the frequency domain, and this fact is very exciting
and important because it states that in any analysis, the more precise you need have the function in time domain, then the less
precise will be the function on the frequency domain.

The third example is the standard sinusoidal function in time domain, that lead to a single positive frequency. Finally the
last example is a set of impulse function.

7.2.4 Estimating the FRF with the Fourier Transform
We can now use the previous explained concept as a practical tool to calculate the FRF. The idea behind this method is that if
we have recorded two arbitrary time signals, u(t) as the input and y(t) as the output signal of a system, we can the use their
Fourier transforms to estimate the frequency response function (FRF) by the following equation:
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G(jω) =
F{y}(ω)

F{u}(ω)
(7.18)

where this fact is implicitly used in sine wave testing with frequency ω0 to determine the frequency of the sine wave. To
show that let’s compute first the Fourier Transform of f1(t) = ejω0t

2π
:

F{f1}(ω) =
1

2π

∫ ∞
−∞

ej(ω0−ω)tdt = δ(ω − ω0) (7.19)

then, considering that a real sine is described by f2(t) = ejω0t−e−jω0t

2π
, its Fourier transform can be easily calculated (by

means of the distributive property of the Fourier Transform) as:

F{f2}(ω) = δ(ω − ω0)− δ(ω + ω0) (7.20)

Thus, whenever we wanna obtain the frequency of any sine wave function, its Fourier transform can be applied and since
the 2 Dirac impulses of F will be located at ±ω0, ω0 can be easily obtained.

Nevertheless, in practice, this procedure has a huge main disadvantage: in reality, even for sine waves of frequency ω0 , the
signals u(t) and y(t) will have finite duration, and thus the FT when applied to this finite signals will also be finite. In order
to avoid undefined expressions (such as division by 0), the computation of the FT should be done only taking into account the
finite values of F{y}(ω0) and F{y}(ω0):

G(jω0) =
F{y}(ω0)

F{y}(ω0)
(7.21)

Nevertheless this procedure of having to manually discard values does not seems good, since it is a waste of computational
time. Another drawback is the condition of continuous time signals, since most of the signal nowadays are digital and not
analog, thus their values are discretised. We have seen that Fourier Transform works with continuous time signals on infinite
horizons, therefore two questions naturally (with their two answers) arises:

1. How to compute FT in practice? Answer: by the Discrete Fourier Transform, which solves the problem of finite time
and discrete values.

2. Can we use an input with many frequencies to get many FRF values in a single experiment? Remember that so far the
only procedure introduce was the frequency sweeping, which lead to high computational times due to repetition of the
process for each frequency. Answer: yes, we should then use multisines.

7.2.5 Discrete Fourier Transform
As we have mentioned, FT works with continuous time signals on infinite horizons, and this condition is most of the time not
satisfied: practical signals are very often discrete and finite. The Discrete Fourier Transform (DFT) works with discrete signals
on finite horizons, solving therefore the problem.

Basically, the main idea of the DFT is that it takes any vector of N numbers u(0), u(1), . . . , u(N − 1) and generates a
new vector U(0), . . . , U(N − 1)) which also has N components (here we start with index zero for convenience). Moreover, th
DFT also has an inverse transformation that recovers the original vector

Fast Fourier Transform (FFT)

One efficient algorithm to compute the DFT is called Fast Fourier Transform (FFT), and in practise the DFT is nearly al-
ways computed by the FFT algorithm, therefore many people (and MATLAB) use the word FFT synonymously with DFT. In
MATLAB for instance, the commands fft and ifft provide an easy interface to compute the FFT and its inverse.

DFT definition

Given a vector of discrete values u(0), . . . , u(N−1), the discrete fourier transform of them are represented byU(0), . . . , U(N−
1), which are computed from u(0), . . . , u(N − 1) using the following equation:

U(m) :=

N−1∑
k=0

u(t)α−mkN , with αN := ej
2π
N (7.22)

It is important to note that αN is anN -th complex root of 1, i.e. αNN = 1 It is also important to note that α−mkN = e−j
2π
N
mk

and α−mkN = αmkN .
From the very basic definition we can try to grasp what the DFT does. Since αN is a point on the unit circle of the complex

plane with phase 2π
N

, and since the k multipliying αN means that the new point αkN point is shifted 2π
N

from the originally αN .
With that it mind, we can understand the DFT as a weighted sum of the vector u to compute each of the U elements, where the
weights are theN point on the unit circle equally spaced by 2π

N
. Note that the factorm represents the fact that when computing
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the DFT, each U has a different weight sequence, otherwise the DFT for any of the U(0), . . . , U(N − 1) points would be
exactly the same.

DFT properties

In the scope of this lecture we will only study the most important and useful properties of the DFT. The properties says that
the DFT of a real valued signal consists of N complex numbers, but only the first half contain useful information, since second
half of vector are complex conjugates of first half, and thus redundant information:

U(N −m) = U(m) (7.23)

Proof 1

U(N −m) =

N−1∑
k=0

u(t)α
−(N−m)k
N =

N−1∑
k=0

u(t)αmkN =

N−1∑
k=0

u(t)α−mkN (7.24)

This property is completely related to the Nyqvist theorem, which stablishes the maximum frequency that can be analysed
giving a certain sampling frequency That limitation is due to something called aliasing, and we will treat it in the following
sections.

As an example of this important property, Figure 7.4 represent a DFT of some signal. On it we can see how the second half
of the values are a conjugate copy of the first half:

Figure 7.4: DFT example to visualise DFT property

7.2.6 Aliasing and Leakage Errors
In order to understand why the DFT is not that perfect, it is important to remember the differences between the FT and the DFT,
and what does it implies in practice.

Basically, FT works on continuous time signals uc(t) with infinite support, whereas the DFT is forced to do make two
approximations:

1. Sampling: the DFT has to work on sampled (discrete time) signals as:

ud(k) := uc(k ·∆t) (7.25)

where ∆t is the sampling time.

2. Windowing: DFT only uses only N samples, i.e. limits the signal to a finite window of horizon length T = N∆t

Unfortunately these two approximations lead to characteristic errors, errors that we will define and explain in the following
sections.
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Aliasing Errors

Sampling can introduce so called aliasing errors when the continuous time signal contained too high frequencies. Basically if
we introduce a sampling rate fs = 1

∆t
, then any signal with frequencies higher than half the sampling rate will suffer from

aliasing. This limit on the maximum frequency that can be sampled is called the Nyquist frequency, and represented by:

fNyquist =
1

2∆t
[Hz] or ωNyquist =

2π

2∆t
[rad/s] (7.26)

In Figure 7.5 we can see this effect. There we can see three different sine waves, the first one with ω1 = 6 rad
s

, a second
one with ω2 = 20 rad

s
, and a third one with ω3 = 60 rad

s
. Since the sampling frequency is ωs = 62 rad

s
< 2 · ω3, the third sine

wave is not sampled correct and aliasing occurs.

Figure 7.5: Aliasing example

Leakage Errors

Leakage is defined as the effect that occurs when the DFT spectrum shows frequencies that were not present in original signal,
but are close to the true frequencies. To understand the reason for that it is important to look at again at the difference between
the FT and the DFT: ∫ ∞

−∞
uc(t) · e−jωt dt ≈

N−1∑
k=0

ud(k) · e−jω(k·∆t)︸ ︷︷ ︸
=e
−j 2π

N
km

·∆t (7.27)

where the integral represents the definition of the FT, and the sum the ideal translation to a discrete version. From that it is
clear that the FT and DFT expressions are only similar when:

−jω(k ·∆t) = −j 2π

N
km i.e. ω = m

2π

∆t ·N (7.28)

So from this last expression we get that the number of samples N , the sampling frequency ωs = 2π
∆T

and the signal
frequency ω are interrelated, and unless their values are properly chosen to satisfy (7.28), then leakage occurs and the DFT
spectrum is not correct. This interaction says that the signal frequency must be a multiple of a base frequency defined by 2π

∆t·N .
The Figure 7.6 illustrates this problem.

The Base Frequency and its Harmonics

One of the concepts strongly related with the leakage effect is the Base Frequency and the Harmonics. We can define the base
frequency as:
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Figure 7.6: The first graph shows leakage, and the second ones does not

ωbase :=
2π

N ·∆t =
2π

T
(7.29)

frequency that represents the slowest sine that fits exactly into the sampling window N · ∆t. Considering this, we can
define and harmonic as follows: a sine signal sin(ωt) is called the m-th harmonic if ω = m · ωbase.

Leakage errors are produced the DFT contains only the firstN/2 harmonics of the base signal, thus the frequency resolution
(difference of two frequencies that are distinguished by the DFT) is equal to the base frequency, and whenever the signal
frequency is not a multiple of the base frequency leakage will occur. On top of that it is easy to identify that the highest
harmonic that the DFT can resolve correspond with the Nyqvist effect.

In summary we can say that the finite length of the window limits the frequency resolution, because the longer the time
window, the smaller the base frequency, and thus the finer the frequencies that can be resolved in the signal.

As an illustration, Figure harmonics represent sine waves the base frequency with the first 4 harmonics in time domain,
and Figure harmonicsfeq does the same for frequency domain.

7.3 Multisine Excitation Signals
If u(t) is a superposition of a set of specially chosen sine waves, the u(t) is known as a multisine, and we can use this input
u(t) to excite and identify in a nonparametric way the LTI system under study.

The multisine is know as the most perfect excitation signal for nonparametric identification, since using this signal as an
excitation signal, and the using the DFT to the input and output signal, we can identify the system in a more shorter way than
using a frequency sweep. Nevertheless, in order to avoid both aliasing and leakage, the following three conditions have to be
met:

1. The DFT window length T has to be an integer multiple of the sampling time ∆t, i.e. T = N ·∆t.
2. The multisine can contain only the harmonics of the base frequency ωbase = 2π

T
, i.e. it is periodic with period T (or an

integer fraction of T ).

3. The multisine does not contain any frequency higher than the Nyquist frequency ωNyquist = π
∆t

. In reality the maximum
frequency is chosen to be as one quarter of the Nyquist frequency.

On top of that, in order to achieve optimal excitation without too large input amplitudes, one chooses the phases of the
multisine carefully to avoid positive interference. The practical purpose of that is that systems have a limitation on the maximum
input amplitude, if there is positive interference on the multisine, the amplitude of the input might be bigger than the maximum,
and the signal is clipped, obtaining a different input than the desired.

One way to create a multisine in a programming language as Matlab, is to define the discrete vector containing the spectrum
(which is very easy to define) of the multisine, defining each phase and amplitude, then doing the inverse fourier transform of
such a vector, the multisine is easy obtained.
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Figure 7.7: Base frequency, second, third and fourth harmonic in time domain

As an illustration, Figure cliping represents a multisine where positive interference occurs due to the fact that the phases
were initialised with the same value, therefore there are high peaks. In Figure cliped we can see how this signal when entering
a system with a maximum input amplitude of 0.2 clips the multisine. Finally in Figure noncliping we can see a multiline which
phases were randomly chosen and thus no positive interference occurs.

7.3.1 The Crest Factor
One way to measure how god a multiline is, in the sense of how much positive interference it has, it is to use the so-called crest
factor.

The crest factor can be defined as the ratio between the highest peak umax and the root mean square urms of the input
signal, and thus a measure of how nice and smooth a multisine is.

CrestFactor =
umax

urms
(7.30)

where

umax := max
t∈[0,T ]

|u(t)| (7.31)

and

urms :=

√
1

T

∫ T

0

u(t)2dt (7.32)

We can look at the previous section to obtain a rough estimator of the crest factor. It is obvious that the multiline depicted
by Figure cliping will have a very bad crest factor, whereas that Figure noncliping will have a much better crest factor.

7.3.2 Optimising Multisine for optimal crest factor
There are two main actions that can be taken in order to have e good multisine in terms of crest factor:

1. Because most of the representation on nonparametric identification (like Bode diagrams) are done in logarithmic spaces,
then it is not a good idea to choose the frequencies in a linear fashion. Instead, we can choose approximately logarithmi-
cally spaced frequencies ωk+1/ωk ≈ 1.05 (many high frequencies are left empty). In this case 1.05 is just an example,
1.1, 1.03, . . . can be also used instead. Keep also in mind that the relation ωk+1/ωk ≈ 1.05 would produce very likely
a frequency ωk+1 which is not a multiple of the base frequency, therefore rounding must executed so that all the chosen
frequencies are multiples of the base frequency.
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Figure 7.8: Base frequency, second, third and fourth harmonic in frequency domain

2. Optimise the phases to minimize the crest factor. The only problem with this approach is that it is nonconvex problem,
therefore it requires the use one of many heuristics. Because of that reason, in practice many times a random algorithm
to choose the phases is used instead, it is suboptimal, but still produces a much better result than having the signal in
synchronisation.

As an illustration, Figure goodmultisine (this figure was obtained from [RP12]) shows the example of a good designed
multisine. We see how the frequencies are after 10 [Hz] are equally spaced in a logarithmic scale. The fact that at the
beginning is not the case it is because of the rounding which makes use of all the harmonics. Furthermore, it can be seen that
the multsine is quite smooth because of the phase optimisation, leading to an optimal crest factor.

7.3.3 Multsine Identification Implementation Procedure
As a final recall we can summarise the procedure to design a multisine, and use it for nonparametric identification. For that we
can list the main 2 steps.

Multisine Procedure Step 1: Input Design

The first step is to choose and design the input u(t) as a periodic multisine, keeping in mind the 3 guidelines pointed before to
avoid aliasing and leakage errors. We can summarise this three guidelines as:

1. Choosing as window length T an integer multiple of the sampling time ∆t, i.e. T = N ·∆t, e.g. N = 4096.

2. Adding to the multisine only harmonics of the base frequency ωbase = 2π
T

.

3. Not adding to the multisine any frequency higher than about half of the Nyquist frequency ωNyquist = 2π
4∆t

Furthermore, it is important to choose nonzero amplitudes only for those frequencies of interest. The most clear example
was to use P logarithmically spaced frequencies ωk(p) = ωbase · k(p), with k(p) being integers between 1 and N/4, and
p = 1, . . . , P , so that it matches the log-plots of Bode diagrams.

The final consideration when designing the multisine is to choose phases randomly (or smarter) to have a small crest factor.

Multisine Procedure - Step 2: Experiment and Analysis

Once the multisine is designed, it is injected into the system in a periodic manner, i.e. the same multisine is injected for many
periods: u(1), . . . , u(m).

After that, it is necessary to wait until the transients died out, discard these first periods, and then record the input/output
data over the last M periods (e.g. M = 100) of duration T (i.e. in total NM time samples).
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Figure 7.9: Multsine with positive interference

Once the data is recorded, the last M periods have to be averaged in time domain, so that we the averages û(k), ŷ(k),
for k = 0, . . . , N − 1 can be obtained. After that, the DFT of û(k) and ŷ(k) must be taken to get Û(k) and Ŷ (k) for
k = 0, . . . , N − 1

Finally, with Û(k) and Ŷ (k) the transfer function can be estimated at the excited frequencies ωp by:

Ĝ(jωk(p)) =
Ŷ (k(p))

Û(k(p))
, p ∈ [1, . . . , P ] (7.33)

Finally the Bode diagram can be plotted considering that the non-excited frequencies might contain some noise.

7.3.4 Multsine Error Analysis
In general the multisine procedure is good, it leads to no leakage or aliasing errors, no transient effects (if we waited long
enough), however it still has to deal with noisy measurements of u and y, and thus, noisy averages of û(k) and ŷ(k), so that
the DFT of them is also noisy.

The main goal of this section is to analysis the estimator Ĝ(jωk), where regarding one of the excited frequencies with
index k, ωk = ωbase · k, the Ĝ(jωk) is defined as:

Ĝ(jωk) =
Ŷ (k)

Û(k)
(7.34)

And with that goal, two main question regarding the estimator arise:

1. Is the estimate unbiased ?

2. How to estimate the variance of Ĝ(jωk) ?

Before continuing the analysis it is important to do one remark regarding the average step: due to linearity of DFT, the
average can be done right before or after computing the DFT, but never after the quotient, since DFT is not a linear operation
(remember resistance operation). Thus, two different flow execution can be done:

• Method 1:

1. Average windows of u, y in time domain

2. Take DFT of average to get Ŷ (k) and Û(k)

3. Build quotient of DFTs, i.e. compute

Ĝ(jωk) =
Ŷ (k)

Û(k)
(7.35)
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Figure 7.10: Multsine with positive interference clipped at the entrance

• Method 2:

1. Take DFT of each window

2. Average DFTs in frequency domain to get Ŷ (k) and Û(k)

3. Build quotient of average DFTs

Assumptions for Simplified Analysis

Before starting the analysis, some assumptions has to be made so that the analysis becomes simpler. The main assumptions
that are done can be summarised as:

1. The noise in all M data windows is uncorrelated.

2. The noise on u(k) and y(k) is also uncorrelated.

3. After the DFT computation(linear transformation with complex numbers), the noise on each U(k) and Y (k) is circular
complex normally distributed (i.e. both real and imaginary parts are Gaussian with the same variance and independent)
with variances σ2

U (k) and σ2
Y (k)

4. Because of averaging over M independent samples, the noise on the averages, NÛ (k) and NŶ (k), is of variance

σ2
Û

(k) =
σ2
U (k)

M
and σ2

Ŷ
(k) =

σ2
Y (k)

M
(and assumed to have zero mean). Furthermore they enter the model for analysis

as:

Û(k) = U0(k) +NÛ (k) and Ŷ (k) = Y0(k) +NŶ (k) (7.36)

with U0 and Y0 the true periodic values

Simplified Analysis

Once the assumptions were made, we can proceed with the analysis. The transfer function considering the error terms is:

Ĝ(jωk) =
Y0(k) +NŶ (k)

U0(k) +NÛ (k)
=
Y0(k)

U0(k)

(
1 +

N
Ŷ

(k)

)
Y0(k)

)
(

1 +
N
Û

(k)

U0(k)

) (7.37)

Applying a Taylor expansion and considering only the first order terms, the final expression that we obtain is:
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Figure 7.11: Multsine without positive interference

Figure 7.12: Multsine without positive interference

Ĝ(jωk) ≈ G0(jωk)
(

1 +
NŶ (k)

Y0(k)
−
NÛ (k)

U0(k)

)
(7.38)

being

G0(jωk) =
Y0(k)

U0(k)
(7.39)

the true transfer function.
Because the noises are zero mean, it is clear that no bias exist (up to first order Taylor expansion). Considering the first

order Taylor expansion:

Ĝ(jωk) = G0(jωk)
(

1 +
NŶ (k)

Y0(k)
−
NÛ (k)

U0(k)

)
(7.40)

The expected value of the transfer function is the true value of the transfer function, thus, we have an unbiased estimator,i.e.:

E{Ĝ(jωk)} = G0(jωk) (7.41)

Regarding the variance of the transfer function, we have due to the independence of the 2 noise terms that:

σ2
Ĝ(k) = |G0(jωk)|2

( σ2
Ŷ

(k)

|Y0(k)|2 +
σ2
Û

(k)

|U0(k)|2
)

(7.42)
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To this variance we still have to take the averaging into account, which gives a final variance for the transfer function:

σ2
Ĝ(k) =

|G0(jωk)|2

M

( σ2
Y (k)

|G0(k)U0(k)|2 +
σ2
U (k)

|U0(k)|2
)

(7.43)

Thus, we can conclude that the quality of the estimation is better for higher signal to noise ratio (SNR) |U0(k)|
σU (k)

. This
obviously justifies our desire to choose high amplitudes for the frequencies of interest.

7.3.5 Practical guidelines
In reality, when implementing a excitation signal to identify the system, there are 3 different alternatives for 3 different situa-
tions.

1. In theory, multilines are the most efficient way to get accuracy in limited time.

2. However, if the system is very fast compared to the human scale (almost nfinite testing time is possible), then frequency
sweep might be the easiest way to identifying. That is way in high frequency electronic applications, frequency sweeps
are used instead of multilines.

3. On the other hand, if the system is very slow compared to the human time scale, then a step response might be more wise
to identify the system, because for the multsines we have to wait until the transients die out, and in very slow systems
that might take many days. A step response won’t give an accurate estimate of the system, but would give an estimator
of the timing of the system, delays...

4. For those system in the middle (Hz to KHz), multilines are definitely the most efficient implementation.
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Chapter 8

Differential Equation Types

Differential equations are a very important concept in every academic field. They are widely used to represent and model
systems, phenomenas...

We can state that they are one of the most basic tools in any Engineer toolbox. Probably everybody has ever heard
about Ordinary Differential Equations (ODE), which represent basic physical phenomena, but they are not the only differential
equations out there. The name of ”Ordinary” comes from that fact that there are other differential equations, and ODE are
simplest and most used ones.

8.1 Ordinary Differential Equations (ODE)
A general ODE has a very known structure, which is represented by:

ẋ(t) = f(x(t), u(t), ε(t), p) (8.1)

Where the different elements of the ODE are vector valued, and can be defined as:

• States x(t), which describe the internal behaviour of the system. Together they form the state vector, which describes
de so-called memory of the system.

• Control inputs u(t), which modify the behaviour of the system.

• Disturbances ε(t), representing the noise that any model/system has.

• Unknown parameters p (constant in time).

In the case of an ODE, we can state that ẋ = dx
dt

= ∂x
∂t

, i.e. the total and partial derivative coincide as the state x only
depends on t. Because of this very basic reason, for notational simplicity, we usually omit time dependence with time and write
ẋ = f(x, u, ε, p). For even simpler notation, from now on we will omit u(t), ε(t) and p in this script, keep in mind however
that in practise they should be added again when necessary. Therefore, the standard form of ODE for this script can be defined
as:

ẋ = f(x) (8.2)

8.1.1 Examples of state vectors
• Pendulum: rotational angle and angular speed.

• Hot plate with pot: temperature of the pot and the plate.

• Continuously Stirred Tank Reactors (CSTR): concentrations of reactants, temperatures.

• Robot arms: angles of the joins and angular speed of each angle joint.

• Moving robots: position centroid (x,y) and orientation.

• Race cars: position centroid (x,y), orientation, time derivatives of these three.

• Airplanes in free flight: 3 locations parameter and 3 orientation parameter + the derivative (speeds) of all these 6.

79
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8.2 Differential Algebraic Equations (DAE)
They are very similar to ODE, the only difference is that besides the differential states x ∈ Rnx there are also another internal
states called algebraic states z ∈ Rnz , being the main difference between them is that despite z represent some internal value,
its derivate does not appear in the physical model.

Thus, we can write the standard form of DAE (semi-explicit DAE because the time derivate appears explicitly) as:

ẋ = f(x, z)

0 = g(x, z)

Where an extra equation term g(x, z) was added. They are called algebraic equations, and they implicitly determine z,
having obviously z and g have the same dimension, i.e. g(x, z) ∈ Rnz . The difference with ẋ = f(x, z) is that whereas
this last is a set of equations, each one of them solving explicitly one of the states of x, g(x, z) does it implicitly, i.e. all the
equations has to be considered as a set, individual equations can not be solved by themselves.

Usually for the sake of uniqueness and numerical solvability, the Jacobian ∂g
∂z
∈ Rnz×nz must be invertible (”index one”),

therefore that is an assumption that we usually make. The good thing of index-one DAE is that they can be solved by dedicated
solvers.

8.2.1 Equivalence of DAE with ODE
Any index-one DAE (invertible Jacobian) can in theory be differentiated to obtain a standard ODE, and that is why index-one
DAE can be typical solved with a ODE solver. The procedure can be defined as follow:

First take the total time derivative of the algebraic equation w.r.t. time t, where we know that g is always content and equal
to 0:

g(x, z) = 0 ⇒ dg

dt
(x, z) = 0 (8.3)

where the right equation is equivalent to:

∂g

∂z
ż +

∂g

∂x
ẋ = 0 (8.4)

using the property of index one, namely invertible Jacobian, ∂g
∂z

is invertible, and we can write ż explicitly as:

ż = −
(
∂g

∂z

)−1
∂g

∂x
f(x, z) (8.5)

This whole procedure is called index reduction. After this index reduction, we obtain the following ODE (where ODE could
be interpreted as a DAE of index zero):

ẋ = f(x, z)

ż = −
(
∂g

∂z

)−1
∂g

∂x
f(x, z)

In the way that this ODE was derived, the only thing that can be ensured is that dg
dt

= 0, i.e. the value of g(x(t), z(t))
remains constant along trajectories: g is an invariant. Moreover, in order to have a complete valid model, we have to ensure
also the algebraic equation g(x, z) = 0 for all the trajectories. However, this algebraic equation is satisfied for all t if it holds
for the initial value, i.e. g(x(0), z(0)) = 0 has to be part of the initial conditions.

For even simple cases, a expression of the form z = h(x) could be obtained directly by linear algebra, and substitution used.
However this cases are very seldom, and most of the times it won’t happen.

8.2.2 More General DAE Formulations
In practice there are 2 more generalisations or extensions of the DAE formulation, namely fully implicit DAE and high index
DAE, therefore it is important to take a look to these concepts.

Fully implicit DAE

Definition 14 A fully-implicit DAE is a DAE that is described by one large ”implicit” nonlinear equation system:

f(ẋ, x, z) = 0 (8.6)

with f(ẋ, x, z) ∈ R(nx+nz) and assuming that ∂f
∂(ẋ,z)

is invertible (index one).
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A very special case of this are implicit ODE f(ẋ, x) = 0.
Fully implicit DAE often appear in mechanical or chemical applications. A good example of it is that example: conservation

equations like thermal energy in a basin of water given by E(t) = k · m(t) · T (t) with heat capacity k, mass m(t), and
temperature T (t). Defining x = [m,T ] the fully implicit DAE can be described as:

Ė = kṁT + kmṪ = 0 (8.7)

Fully-implicit equations can be easily solved in MATLAB using the ode15i solver. It takes as all states in one vector
y = (x, z)>. Grammar: f(t, y, ẏ) = 0. So let’s look at the example of:

f(t, y, ẏ) =

[
ẏ1 + y1 + y2 = 0
y2 − sin(t) = 0

]
(8.8)

where y2 is the algebraic state. We can simulate and solve this system in Matlab as follow:

1. Define implicit DAE:
function [ resid ] = mydae( t, y, ydot )
resid=zeros(2,1);
resid(1)=ydot(1)+y(1)+y(2);
resid(2)=y(2)-sin(t);
end

2. Create consistent initial values:
y0=[10;0];
ydot0=[-10;1];

3. Call solver (on time interval [0, 10]):
[tout, yout]=ode15i(@mydae,[0, 10], y0,ydot0)
plot(tout,yout)

The output of such a script can be seen on Figure 8.1

Figure 8.1: Numerical solution for Matlab defined DAE

High Index DAE

Definition 15 (High Index DAE) We can define a high index DAE as a DAE of index n, where n ≥ 2, where index refers to
the number of total time derivatives that it takes to reduce the DAE to an index zero DAE, i.e. reduce to an ODE.

In practice nobody reduces further than index one, since good DAE solvers exist already for index one e.g. MATLAB
ode15i.
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8.3 Partial Differential Equations (PDE)
Definition 16 () Partial Differential Equations A Partial Differential Equations (PDE) is a differential equation which has
partial derivatives of several variables not only with respect of time t, but also with respect of some spatial coordinates x.
We can name the solution as u(t, x), which represents the vector of variables. Then, the general expression of a PDE can be
written as:

f(u,
∂u

∂t
, . . . ,

∂nu

∂tn
, x,

∂u

∂x
, . . . ,

∂mu

∂xm
) = 0 (8.9)

where n,m ∈ Z+. Please, note that here u and x have totally different meaning than the rest of the text, u is the vector of
variables, and x the set of spatial coordinates.

PDEs typically arise from spatially distributed parameters, and because of that they are also called ”distributed parameter
systems”. The easiest example we can illustrate is the heat (diffusion) equation in one dimension, also known as Flick’s Second
Law of Diffusion.

∂u

∂t
= D

∂2u

∂x2
(8.10)

with D diffusion constant
In order to solve any PDE, it is necessary to specify boundary conditions in space (what is going on always in the space

boundaries of the system) and initial conditions at time zero, i.e. the value for u(x, 0) must be known for any x. Since in theory
x is continuous, the set of initial conditions must be given by a profile in space, i.e. the initial conditions form a set of infinite
states.

Because solving the set of equations with infinitely initial conditions can be extremely hard, normally the spatial derivatives
are discretised keeping the time derivatives as continuous, so that we generate a set of ODEs, where each ODE represents the
numerical solution of the time evolution of one of these discretised u(k), and then the ODE solver can be used. The method of
discretising all variables but one to solve a PDE is called ”method of lines”.

In order to discretise the spatial derivative many different algorithms currently exists, among the most famous ones, one
could name the Finite Element Method (FEM), the Finite Volumes Method or the Finite Differences Method.

8.3.1 Examples of systems described by a PDE
• Any temperature profile since it is described always by the Flick’s Second Law of Diffusion. The temperature profile

can be in a microchip, a water tank, a wall or even the inner part of the earth.

• Any fluid flow, since it is based on the Navier-Stokes PDE. For instance any airflow in a computer, or around an
airplane, in a building or in the atmosphere. The algorithm/field that takes care of such PDEs is know as computational
fluid dynamics (CFD).

• The growth of bacteria in a rotten vegetable.

• Chemical concentrations in a tubular reactor

Let’s derive the PDE in the case of the Heat equation defined by Flick’s Second Law of Diffusion. We can describe the
heat equation as:

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
(8.11)

with x ∈ [0, 1], and with boundary conditions: u(0, t) = sin(t), u(1, t) = 0. We can imagine this situation as having
any sort of 1D heat transmission, where in one side the temperature remains constant and equal to 0, and in the other side the
temperature is modify as a sine wave due to some input heat.

We can then apply then the method of lines, i.e. keep the time derivatives while applying finite differences to the spatial
derivatives. If then we use a grid of size ∆x = 1/N , we can make a spatial discretisation of as u uk ≈ u(k · ∆x, t) with
k ∈ [1, N − 1]. Then, applying the approximation of a derivative for discrete variables ∆u

Deltax
, the final discretised ODE is

obtained:

u̇k = D
(uk+1 − 2uk + uk−1)

(∆x)2
(8.12)

where since k ∈ [1, N − 1], the values of u0 and uN are undefined. However, they are when we incorporate the boundary
conditions to the problem:

u0 = sin(t) and uN = 0 (8.13)

Finally we should set the initial condition, e.g. u(x, 0) = 0, i.e. u0(0) = u1(0) = . . . = uN (0) = 0. With that, we obtain
a ODE where each variable of the ODE represent one of the discretised spacial states of the problem, and with such an ODE
we can use for instance the solver ode15s from Matlab in order to simulate the system
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8.3.2 MATLAB example
In order to see the whole procedure, it is good to solve the previous example using Matlab.

1. The first thing to do is to set the discretised ODE, which giving a certain time calculates the derivative of each of the
discretised spacial states:
function [ udot] = mypde(t,u )
N=20; D=0.1; udot=zeros(N,1);
u0=sin(t);
udot(1)=N*N*D*(u0-2*u(1)+u(2));
for k=2:N-1
udot(k)=N*N*D*(u(k-1)-2*u(k)+u(k+1));
end
uN=0;
udot(N)=N*N*D*(uN-2*u(N)+uN);

2. Then, the initial conditions must be set for each of the estates u: u0=zeros(20,0);

3. Finally we can simulate each one of the spacial discretised states on a time interval calling the ODE solver: [tout,uout]=ode15s(@mypde,
[0 10], u0)
figure(1); plot(tout,yout);
figure(2); surf(tout,linspace(0,1,20),uout’)

On Figure pdemat we can observe the evolution of some of the states through time, only some of them are represented for
the sake of visualisation. We can see how the evolution through time is to follow the sine wave that enters the system, but
with a attenuation in each sequentially state. That is the expected behaviour in any diffusion process, where the places
with lower concentration (in this case temperature) get their values increased from the places where the concentration is
bigger, but unless the process last forever, the concentrations never get to be equal.

Figure 8.2: Numerical solution for some of the spatial state u(k) in the defined Heat Equation PDE

On Figure 8.3 we can see an evolution on time and space in a 3D plot of the temperature. From it, we can appreciate the
boundary conditions at u(t, x = 0) = sin(t), u(t, x = 20) = 0 and the initial condition of u(t = 0, x) = 0.

8.4 Delay Differential Equations (DDE)
A Delay Differential Equation (DDE) occurs if the rate of change of the current state depends on a state in the past. One of the
simplest form of DDE is the following, with one single delay d > 0:

ẋ(t) = f(x(t− d)) (8.14)
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Figure 8.3: Numerical solution in 3D for the defined Heat Equation PDE

where x ∈ Rn represents the state vector of the system.
The main problem with DDE is the simulation, because in order to simulate the system, we need to know the state x(t) on

a complete continuous interval t ∈ [0, d]. Thus, as we had for PDE, now we have again infinitely many initial conditions, since
at the very beginning it is necessary to know a continuous path of the state x, from x(0) until x(d).

In order to solve this problem we have to do the same as we did for PDE, namely discretize the problem. In particular, we
can model the time delay as a ”pipe flow”, where the pipe flow represents a flow of the state in time. To do that, we can add
an extra variable y ∈ [0, 1] representing the position inside the ”pipe”, and another variable u representing the flow in the pipe:
we can think of u as the continuous past memory of x flowing backwards through the ”time pipe”, so that at the entrance of the
pipe we will have the state x at the current time t, and in the output of the pipe the state x will be state at some point in past
(t− d) where d is the duration of travel through the pipe. Considering that, we can set the PDE of this pipe flow representing
the continuous memory as:

∂u

∂t
= −1

d

∂u

∂y

with u(0, t) = x(t) representing the input into pipe and x(t− d) = u(1, t) representing the output of the pipe. Then, this PDE
can be solved as we did in the previous section: we can spatially discretise the pipe. With such a discretisation, when a special
scheme called “upwind-discretization” is usde, the delay ends up being modelled by a sequence of first oder delays (”PT1”),
and we can refer to each one of these discretised states uk representing the past memory as ”helper states”.

8.4.1 Example of DDE
We show a simple example with x ∈ R, where the scalar DDE is:

ẋ(t) = −x(t− d) (8.15)

To solve the problem we would have to introduce N ”helper states” [u1, . . . , uN ], which once we spatially discretise the PDE
modelling the pipe flow, we would end up with:

u̇k = −N
d

(uk − uk−1), ∀k ∈ [1, . . . , N ] : (8.16)

with the boundary conditions on the PDE u0(t) = x(t), and where d
N

represents ∆u. As we have explained already
before, the last helper state would approximate the desired delayed value, i.e.:

x(t− d) ≈ uN (8.17)

What it is important to keep in mind is that in practice, often N = 2 to 5 approximate a real delay with sufficient accuracy.
We can set as we did before the example in Matlab, and the represent the results in a figure.
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1. The first thing to do is to set the discretised ODE. To understand the algorithm keep in mind that udot represent the
discretise partial derivates of the helper states, and the idea is since for the DDE properties x(t) = u0(t) and x(t−d) ≈
uN (t), and since the DDE is ẋ(t) = −x(t − d), it is clear that ẋ(t) = u̇0(t) ≈ uN (t), and that is represented by the
last line udot(1) = −u(N).
function [ udot] = mydde(t, u)
d=1; N=20; udot=zeros(N,1);
for k=2:N
udot(k)=-N/d*(u(k)-u(k-1));
end
udot(1)= - u(N);
end

2. Then, we specify the initial conditions: u0=zeros(20,0); u0(1)=1

where we basically have that x(t = 0) = u0(t = 0) = 1, and then we see the evolution of the helper state u0(t) = x(t).

3. Finally we can simulate each one of the spacial discretised states on a time interval calling the ODE solver:
[tout,uout]=ode15s(@mypde, [0 10], u0)
figure(1); plot(tout,yout);
figure(2); surf(tout,linspace(0,1,20),uout’)

As before we can check the simulation results. On Figure 8.4 we can observe the evolution of the first helper state u0(t),
which represents the main state x(t), when the pipe is modelled as a discretisation of 3 helper states (3 PT1). We would expect
a delay at t = 1 since d was also set as 1. However, we can see that the delay is not really perfect, nevertheless it delays the
state almost up to t = 1. We can compare this result with the same value for 10 helper states on Figure 8.5, where we can see
how adding more helper states, i.e. increasing the number of discretised small delays, improves the approximation of the delay
function.

Figure 8.4: Numerical solution of x(t) = u0(t) DDE using 3 helper states

On Figure 8.6 we can see the evolution on time of the three helper states, x(t) = u0(t), x(t − d/2) = u1(t) and
x(t − d) = u2(t). We can compare again this result with the approximation for 10 helper states on Figure 8.7, where once
again we can see how the transition between the states is smoother (smaller first order delays, but more amount of them leads
to smother transitions between states, and thus to a better delay approximation).

Finally, on Figure 8.8 we can see an evolution on time and space in a 3D plot of the 3 helper states. From it, we can
appreciate the boundary conditions u0(t = 0) = x(t = 0) = 1 and u1(t = 0) = u2(t = 0) = 0.
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Figure 8.5: Numerical solution of x(t) = u0(t) DDE using 10 helper states

Figure 8.6: Numerical solution of x(t) = u0(t), x(t− d/2) = u1(t) and x(t− d) = u2(t)
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Figure 8.7: Numerical solution of of all the helper states using 10 helper states

Figure 8.8: Numerical solution of the delay equation with 3 helper states in 3D
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Chapter 9

Kalman Filter

9.1 Recursive Least Squares
Before explaining the kaman filter from the perspective of system identification, it is important to revise the algorithm called
Recursive Least Squares, which was presented in Section 4.3, and it is convenient to remember.

This algorithm was basically used for online parameter/state estimation, i.e. to estimate the optimal parameters when the
flow of incoming information is not finite but always updated, and the need for an algorithm that computes the update optimised
state from the previous optimised state (and without increasing the computational load) is necessary.

Basically we saw that for linear models yk = φ>k θ + εk and i.i.d. Gaussian noise, we could set the following recursive
algorithm to solve the problem stated above:

1. First of all, we had to start with some a-priori knowledge on θ in form of a mean θ̂0 and inverse covariance Q0, so that
the first loop at k = 1 could be computed.

2. Then, at each time k, when a new measurement yk arrives, the first thing to do is to compute the new inverse covariance
Qk as:

Qk = Qk−1 + φkφ
>
k (9.1)

What that equation represent is the fact that adding measurements increases the ”information”, where the amount of
information is measured by the inverse of the covariance matrix:

3. After the computation of the covariance, the computation of the new estimate hatθk (“innovation update”)

θ̂k = θ̂k−1 +Q−1
k φk(yk − φ>k θ̂k−1)︸ ︷︷ ︸

”innovation”

(9.2)

In that algorithm step 1 is only executed once, and at the beginning, whereas the step 2 and 3 are done recursively for each
new measurement. This problem can be also expressed in the form of a general optimisation problem as follows:

θ̂k = arg min
θ

(θ − θ̂0)>Q0 (θ − θ̂0) +

k∑
i=1

(yi − φ>k θ)2 (9.3)

9.2 Recursive Least Squares for State Estimation: an approach to Kalman
Filter derivation

Let’s assume now that we have a known deterministic linear system defined by

xi = Ai−1xi−1 (9.4)

with also a linear measurement equation (for i = 1, . . . , k) defined by:

yi = Cixi + vi (9.5)

where vi is a i.i.d. zero mean noise, and initial knowledge on the initial state is known and has the form of a mean x̂0 and
inverse covariance Q0.

Clearly, due to linearity, the state at any point xk can be expressed as xk = Ak−1 · · ·A0x0 and in turn the measurement
yk at any given point k becomes:

89
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yk = CkAk−1 · · ·A0x0 + vk (9.6)

Taking a look at the structure of this algorithm and comparing it with the RLS algorithm presented before, it is obvious
that using θ ≡ x0, εk ≡ vk and φ>k = CkAk−1 · · ·A0, this problem can be casted into the standard RLS framework defined
before. Particularly, our recursion becomes:

Qk = Qk−1 + (CkAk−1 · · ·A0)>CkAk−1 · · ·A0

θ̂k = θ̂k−1 +Q−1
k (CkAk−1 · · ·A0)>(yk − CkAk−1 · · ·A0θ̂k−1)

(9.7)

However, this last expression is not really that helpful, since very often, what we are most interested in is the current state
xk rather than x0, thus let’s try to derive a recursive expression for xk. Let us denote the optimal estimator of xk given the data
(y1, . . . , ym) as x̂[k|m]. Clearly,

x̂[k|m] = Ak−1 · · ·A0θ̂m (9.8)

and

cov{x[k|m]}︸ ︷︷ ︸
=:P[k|m]

= Ak−1 · · ·A0 ·Q−1
m ·A>0 · · ·A>k−1 (9.9)

Where x̂[k|m] represents the best estimator of x̂k given m measurements. Ideally we would like to obtain x̂[k|k], to have
always the state update with the most recent measurement data. If know we multiply every term of the first equation of (9.7)
by Ak−1 · · ·A0 we obtain:

Ak−1 · · ·A0 · θ̂k = Ak−1 · · ·A0 · θ̂k−1 +Ak−1 · · ·A0 ·Q−1
k (CkAk−1 · · ·A0)>(yk − CkAk−1 · · ·A0θ̂k−1)

x̂[k|k] = x̂[k|k−1] + P[k|k] · C>k (yk − Ckx̂[k|k−1])
(9.10)

where this expression is usually known as the update of the mean. Basically what it does is, it checks how good the
prediction x̂[k|k−1] is, and if it is not perfect it corrects it by using the inverse of its covariance.

Furthermore, assuming for simplicity invertibility of Ak−1 · · ·A0, and multiplying every term of the second equation
of (9.7) by Ak−1 · · ·A0 on the right and by (·A>0 · · ·A>k−1) on the left, we obtain the covariance update step:

P−1
[k|k] = P−1

[k|k−1] + C>k Ck (9.11)

That equation what basically means is that to the previous predicted inverse covariance, we still have to include the new
information coming in.Moreover, to obtain the x̂[k|k−1] and P−1

[k|k−1], the so-called time propagation (or prediction) step, we
can use directly:

x̂[k|k−1] = Ak−1 · x̂[k−1|k−1] (9.12)

and
P[k|k−1] = Ak−1 · P[k−1|k−1] ·A>k−1 (9.13)

Where this propagation step means to predict the future value of the variables, without new information coming in, predic-
tion values which are checked and updated in the previously defined update step.

Thus, we can summary the RLS for State Estimation as the computation of two steps in order to compute the estimates
x[k|k] and covariances P[k|k]:

1. Prediction Step (before measurement), where we try to create some sort of a-priori information by prediction the future
new step:

x̂[k|k−1] = Ak−1 · x̂[k−1|k−1] (9.14)

P[k|k−1] = Ak−1 · P[k−1|k−1] ·A>k−1 (9.15)

2. Innovation Update Step (after measurement):

P[k|k] =
(
P−1

[k|k−1] + C>k Ck
)−1

(9.16)

x̂[k|k] = x̂[k|k−1] + P[k|k] · C>k (yk − Ckx̂[k|k−1]) (9.17)
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Another thing to keep in mind is the meaning of P in this equations. If P represent the covariance of the estimator x̂, then
it is clear that the bigger the covariance the less we should trust our model. If we look at P , that is why is basically doing the
algorithm in the of the innovation step, where the bigger the P is, the more we change the updated state according to the new
mesasurements. However, if P is small, it means that the covariance is small, therefore we should trust the model more than the
measurements, and that is why in this case the expression (yk − Ckx̂[k|k−1]) gets less weight than the previous well predicted
state x[k|k−1].

So far every equation derived is completely deterministic, we have just solved the problem of a RLS. However, with all the
previous equations in mind, a natural question should arise: can we interpret the x̂[k|k−1] and P[k|k−1] as a-priori information
on xk based on prediction model? If so, how can we model the uncertainty for that prediction model?

The answer to these two questions is that we can model the priori-information xk xk = Ak−1xk−1 + wk−1, where wk−1

is a i.i.d. state noise on the state model with zero mean and covariance Wk−1. Does this make sense? In practice it does, from
an intuitive point of view we can say that since no model is perfect, if we don’t know anything about the model, and a good
way to approximate the uncertainty of a model is adding i.i.d. noise, so that we take into account that model predicts are not
100% accurate.

Because of these perturbations on the state model, an extra term must be added to the equation of the prediction step where
the covariance of the estimator is predicted. A good way to point this uncertainty is by not only predicting the new covariance
by a linear mapping, but also add at each iteration the covariance of the noise, Wk−1 so that the uncertainty on the model at
each prediction step is accounted for. The predicted covariance is now defined by:

P[k|k−1] = Ak−1 · P[k−1|k−1] ·A>k−1 +Wk−1 (9.18)

This set of equations that we have derived are basically known as Kalman Filter.

9.3 Kalman Filter
In the previous section we have basically obtained the Kalman Filter, only one remark more is necessary. We can consider the
more generally model, where we can assume measurement noise vk with covariance V , such that measurements are weighted
with V −1, the it is clear how V −1 has to enter the update of the Kalman Filter.

The full model can be described as:
Given:

xk+1 = Akxk + wk and yk = Ckxk + vk (9.19)

with i.i.d. zero mean noises with covariances W , V , the steps of the Kalman Filter to solve this problem are:

1. Prediction Step:

x̂[k|k−1] = Ak−1 · x̂[k−1|k−1] (9.20)

P[k|k−1] = Ak−1 · P[k−1|k−1] ·A>k−1 +Wk−1 (9.21)

2. Innovation Update Step:

P[k|k] =
(
P−1

[k|k−1] + C>k V
−1Ck

)−1

(9.22)

x̂[k|k] = x̂[k|k−1] + P[k|k] · C>k V −1(yk − Ckx̂[k|k−1]) (9.23)

Finally, and as we did with the RLS algorithm, we can set the general optimisation problem that defines the Kalman Filter
as:

[x̂0, . . . , x̂N ] = arg min
[x0,...,xN ]

(x0 − x̂0)> · P−1
0 · (x0 − x̂0)+

+
N∑
i=1

(yi − Ci · xi)T · V −1 · (yi − Ci · xi)+

+

N−1∑
i=1

(xi+1 −Ai · xi)T ·W−1 · (xi+1 −Ai · xi)

(9.24)

Where the first terms tries to minimise the initial conditions given to the problem, and takes as a covariance the initial
covariance given as a prior-information. Where the second term is responsible for the incoming measurements, so that for
those directions where V is high, the standard deviation of the measurements is too high, and the problem gives them less
weight. A similar reasoning is applied to the third term, where the accuracy of the model is taken into account.

Despite the minimisation all over the set of vectors [x̂0, . . . , x̂N ], the only thing that is of interest is the last value xN
representing the last state with the last values incorporated x[k|k].
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9.4 Kalman Filter in continuos time
So far the equations that we have derived corresponded to the discrete version of the Kalman Filter. However, we can easily
transfer this knowledge to the continuous Kalman Filter considering first of all a continuous time model with noises wc, vc:

ẋ(t) = Ac(t)x(t) + wc(t)

y(t) = Cc(t)x(t) + vc(t)

Noteing that wc(t) has unit [x]/[t] and vc(t) has unit [y]. Furthermore it is reasonable assumption to consider that we have
white noises noises in both, state model and measurement, and with that we can define the covariance as diagonal matrix of the
form:

• cov(wc(t1), wc(t2)) = δ(t1 − t2) ·W c where [W c] = [x]2/[t]

• cov(vc(t1), vc(t2)) = δ(t1 − t2) · V c where [V c] = [y]2 · [t]

We can then try to transfer this continuous model to discrete time, so that we can compare with the previously derived
Kalman Filter. For that we can use small time step ∆t and time points tk = k · ∆t. Then, we can identifying the discrete
variables as follow:

• xk = x(tk).

• wk =
∫ tk+1

tk
wc(t) dt. Which makes a lot of sense, since the random walk theory says: W = ∆t ·W c (the longer we

wait, the more uncertain we become).

• Ck = C(tk).

• yk = 1
∆t

∫ tk+1

tk
y(t) dt, and thus vk = 1

∆t

∫ tk+1

tk
vc(t) dt. That equation represents the fact the the measurements

have a completely opposite behaviour than model states, since because of the averaging, covariance matrix shrinks with
longer time intervals, i.e. V = V c∆t (we give more weight to each measurement when taking fewer measurements).

With that set, we can directly write the equivalent discrete time model as follows.

xk+1 = [I + ∆t ·Ac(tk)]︸ ︷︷ ︸
=:Ak

xk + wk

yk = Cc(tk)︸ ︷︷ ︸
=Ck

xk + vk

Where the covariances can are also described as: cov(wk) = W = ∆t ·W c and
cov(vk) = V = ∆t−1 · V c

And with that we can set directly the discretised Kalman Filter in the case that we discretise the continuous time model:

• Prediction step (up to first order):

x̂[k+1|k] = x̂[k|k] + ∆t ·Ac(tk)x̂[k|k]

P[k+1|k] = P[k|k] + ∆t
[
Acc(tk)P[k|k] + P[k|k]A

c(tk)> +W c
]

• Innovation Update Step:

P[k|k] =
(
P−1

[k|k−1] + ∆t · C>k (V c)−1Ck
)−1

(9.25)

x̂[k|k] = x̂[k|k−1] + ∆t · P[k|k] · C>k (V c)−1(yk − Ckx̂[k|k−1])

By Taylor expansion, Eq. (9.25) becomes

P[k|k] = P[k|k−1] −∆t · P[k|k−1]C
>
k (V c)−1CkP[k|k−1] (9.26)

Finally adding both steps together, identifying x̂(tk) ≡ x̂[k+1|k] and P (tk) ≡ P[k+1|k], and taking the limit ∆t → 0, the
previous discretised Kalman Filter yields to the the two differential equations:

˙̂x(t) = Ac(tk)x̂(t) + P (t)Cc(t)>(V c)−1 (y(t)− Cc(t)x̂(t))

Ṗ (t) = Ac(t)P (t) + P (t)Ac(t)> +W c − P (t)Cc(t)>(V c)−1Cc(t)P (t)

These continuous time equations are called the “Kalman-Bucy-Filter” and represent the Kalman Filter in continuous time.
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