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The Kalman Filter
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Overview

I Recursive Least Squares Revisited

I Discrete Time Kalman Filter

I Continuous Time Kalman Filter

I Extended Kalman Filter
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Recursive Least Squares (RLS) Revisited
For linear models yk = φ>k θ + εk and i.i.d. Gaussian noise, we had
the following recursion.

I start with some a-priori knowledge on θ in form of a mean θ̂0

and inverse covariance Q0. Start loop at k = 1
I at time k , when measurement yk is known, compute new

inverse covariance k as

Qk = Qk−1 + φkφ
>
k

(adding measurements increases ”information”)
I compute new estimate for the mean (“innovation update”)

θ̂k = θ̂k−1 + Q−1
k φk(yk − φ>k θ̂k−1)︸ ︷︷ ︸

”innovation”

I delivers recursive solution to LLS problem

θ̂k = arg min
θ

(θ − θ̂0)>Q0 (θ − θ̂0) +
k∑

i=1

(yi − φ>k θ)2
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Recursive Least Squares for State Estimation (1)

I Assume now that we have a known deterministic linear system

xi = Ai−1xi−1

with linear measurement equation (for i = 1, . . . , k)

yi = Cixi + vi

(where vi is i.i.d. zero mean noise), and initial knowledge on
initial state in form of mean x̂0 and inverse covariance Q0

I Clearly, xk = Ak−1 · · ·A0x0 and thus

yk = CkAk−1 · · ·A0x0 + vk

I Using θ ≡ x0, εk ≡ vk and φ>k = CkAk−1 · · ·A0, this can be
cast into the standard RLS framework from before

diehl
Pencil

diehl
Pencil

diehl
Pencil

diehl
Pencil

diehl
Pencil

diehl
Pencil

diehl
Pencil

diehl
Pencil

diehl
Pencil

diehl
Pencil



i
i

“lecture23” — 2015/2/3 — 9:15 — page 8 — #8 i
i

i
i

i
i

Comments



i
i

“lecture23” — 2015/2/3 — 9:15 — page 9 — #9 i
i

i
i

i
i

Recursive Least Squares for State Estimation (2)
I With θ ≡ x0 and

φ>k = CkAk−1 · · ·A0

our recursion becomes:

Qk = Qk−1 + (CkAk−1 · · ·A0)>CkAk−1 · · ·A0

and

θ̂k = θ̂k−1 + Q−1
k (CkAk−1 · · ·A0)>(yk − CkAk−1 · · ·A0θ̂k−1)

I often, we are most interested in current state xk . Let us
denote its estimate given the data (y1, . . . , ym) by x̂[k|m].
Clearly,

x̂[k|m] = Ak−1 · · ·A0θ̂m

and

Cov{x[k|m]}︸ ︷︷ ︸
=:P[k|m]

= Ak−1 · · ·A0 · Q−1
m · A>0 · · ·A>k−1
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Recursive Least Squares for State Estimation (3)

I the innovation update of the mean then simplifies to

x̂[k|k] = x̂[k|k−1] + P[k|k] · C>k (yk − Ck x̂[k|k−1])

I the covariance update becomes (assuming for simplicity
invertibility of Ak−1 · · ·A0)

P−1
[k|k] = P−1

[k|k−1] + C>k Ck

I for the propagation in time (prediction), we can use

x̂[k|k−1] = Ak−1 · x̂[k−1|k−1]

and
P[k|k−1] = Ak−1 · P[k−1|k−1] · A>k−1
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Summary of Recursive Least Squares

(and Extension)

Two steps to compute estimates x[k|k] and covariances P[k|k]:

I Prediction Step (before measurement):

x̂[k|k−1] = Ak−1 · x̂[k−1|k−1] (1)

P[k|k−1] = Ak−1 · P[k−1|k−1] · A>k−1

+ Wk−1

(2)

I Innovation Update Step (after measurement):

P[k|k] =
(
P−1

[k|k−1] + C>k Ck

)−1
(3)

x̂[k|k] = x̂[k|k−1] + P[k|k] · C>k (yk − Ck x̂[k|k−1]) (4)

I Can interpret x̂[k|k−1] and P[k|k−1] as a-priori information on

xk , based on prediction model xk = Ak−1xk−1

+ wk−1

I Could we also incorporate i.i.d. state noise wk−1 with zero
mean and covariance Wk−1?
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Summary of Recursive Least Squares

(and Extension)

Two steps to compute estimates x[k|k] and covariances P[k|k]:
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xk , based on prediction model xk = Ak−1xk−1 + wk−1

I Could we also incorporate i.i.d. state noise wk−1 with zero
mean and covariance Wk−1?



i
i

“lecture23” — 2015/2/3 — 9:15 — page 16 — #16 i
i

i
i

i
i

Summary of Recursive Least Squares (and Extension)

Two steps to compute estimates x[k|k] and covariances P[k|k]:

I Prediction Step (before measurement):

x̂[k|k−1] = Ak−1 · x̂[k−1|k−1] (1)

P[k|k−1] = Ak−1 · P[k−1|k−1] · A>k−1 + Wk−1 (2)

I Innovation Update Step (after measurement):

P[k|k] =
(
P−1

[k|k−1] + C>k Ck

)−1
(3)

x̂[k|k] = x̂[k|k−1] + P[k|k] · C>k (yk − Ck x̂[k|k−1]) (4)

I Can interpret x̂[k|k−1] and P[k|k−1] as a-priori information on

xk , based on prediction model xk = Ak−1xk−1 + wk−1

I Could we also incorporate i.i.d. state noise wk−1 with zero
mean and covariance Wk−1?



i
i

“lecture23” — 2015/2/3 — 9:15 — page 17 — #17 i
i

i
i

i
i

Comments



i
i

“lecture23” — 2015/2/3 — 9:15 — page 18 — #18 i
i

i
i

i
i

The Kalman Filter

We have basically obtained the Kalman Filter. More generally, can
assume measurement noise vk with covariance V , such that
measurements are weighted with V−1.

I Full model: xk+1 = Akxk + wk and yk = Ckxk + vk
with i.i.d. zero mean noises with covariances W , V .

I The steps of the Kalman Filter are:
I Prediction Step:

x̂[k|k−1] = Ak−1 · x̂[k−1|k−1] (5)

P[k|k−1] = Ak−1 · P[k−1|k−1] · A>k−1 + Wk−1 (6)

I Innovation Update Step:

P[k|k] =
(
P−1

[k|k−1] + C>k V−1Ck

)−1

(7)

x̂[k|k] = x̂[k|k−1] + P[k|k] · C>k V−1(yk − Ck x̂[k|k−1]) (8)
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Optimization Problem solved by Kalman Filter
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The Kalman Filter in Continuous Time (1)
I Continuous time model with noises w c, v c:

ẋ(t) = Ac(t)x(t) + w c(t)

y(t) = C c(t)x(t) + v c(t)

I Note that w c(t) has unit [x ]/[t] and v c(t) has unit [y ]
I Assume white noises:

I Cov(w c(t1),w c(t2)) = δ(t1 − t2) ·W c where [W c] = [x ]2/[t]
I Cov(v c(t1), v c(t2)) = δ(t1 − t2) · V c where [V c] = [y ]2 · [t]

I Transfer to discrete time: use small time step ∆t and time
points tk = k ·∆t, identify xk = x(tk).

I Identify wk =
∫ tk+1

tk
w c(t) dt. Random walk theory says:

W = ∆t ·W c (the longer we wait, the more uncertain we
become)

I Identify Ck = C (tk), yk = 1
∆t

∫ tk+1

tk
y(t) dt, and thus

vk = 1
∆t

∫ tk+1

tk
v c(t)dt. Due to averaging, covariance matrix

shrinks with longer time intervals, i.e. V = V c/Deltat (we
give more weight to each measurement when taking fewer
measurements).
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The Kalman Filter in Continuous Time (2)

I Discrete time model:

xk+1 = [I + ∆t · Ac(tk)]︸ ︷︷ ︸
=:Ak

xk + wk

yk = C c(tk)︸ ︷︷ ︸
=Ck

xk + vk

I Covariances:
Cov(wk) = W = ∆t ·W c and
Cov(vk) = V = ∆t−1 · V c
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The Kalman Filter in Continuous Time (3)

I Prediction step (up to first order):

x̂[k+1|k] = x̂[k|k] + ∆t · Ac(tk)x̂[k|k]

P[k+1|k] = P[k|k] + ∆t
[
Ac(tk)P[k|k] + P[k|k]A

c(tk)> + W c
]

I Innovation Update Step:

P[k|k] =
(
P−1

[k|k−1] + ∆t · C>k (V c)−1Ck

)−1
(9)

x̂[k|k] = x̂[k|k−1] + ∆t · P[k|k] · C>k (V c)−1(yk − Ck x̂[k|k−1])

I By Taylor expansion, Eq. (9) becomes

P[k|k] = P[k|k−1] −∆t · P[k|k−1]C
>
k (V c)−1CkP[k|k−1]



i
i

“lecture23” — 2015/2/3 — 9:15 — page 27 — #27 i
i

i
i

i
i

Comments



i
i

“lecture23” — 2015/2/3 — 9:15 — page 28 — #28 i
i

i
i

i
i

The Kalman Filter in Continuous Time (4)

I Adding both steps together, identifying x̂(tk) ≡ x̂[k+1|k] and
P(tk) ≡ P[k+1|k], and taking the limit ∆t → 0 yields the two
differential equations:

˙̂x(t) = Ac(tk)x̂(t) + P(t)C c(t)>(V c)−1 (y(t)− C c(t)x̂(t))

Ṗ(t) = Ac(t)P(t) + P(t)Ac(t)>

+ W c − P(t)C c(t)>(V c)−1C c(t)P(t)

I These continuous time equations are called the
“Kalman-Bucy-Filter”



i
i

“lecture23” — 2015/2/3 — 9:15 — page 29 — #29 i
i

i
i

i
i

Comments



i
i

“lecture23” — 2015/2/3 — 9:15 — page 30 — #30 i
i

i
i

i
i

The Extended Kalman Filter in Continuous Time
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The Extended Kalman Filter in Discrete Time
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