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Recursive Least Squares (RLS) Revisited
For linear models y, = gbZH + € and i.i.d. Gaussian noise, we had
the following recursion.
» start with some a-priori knowledge on 6 in form of a mean bo
and inverse covariance (p. Start loop at k =1
> at time k, when measurement yj is known, compute new
inverse covariance k as

Qk = Qu_1+ Pk}

(adding measurements increases " information” )
» compute new estimate for the mean (“innovation update”)

Ok = Ok—1+ Q' k(v — b4 Or—1)
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Recursive Least Squares (RLS) Revisited

For linear models y, = gbZG + € and i.i.d. Gaussian noise, we had
the following recursion.

>

start with some a-priori knowledge on # in form of a mean bo
and inverse covariance (p. Start loop at k =1

at time k, when measurement yj is known, compute new
inverse covariance k as

Q= Qi1+ dkdf (o)
(adding measurements increases " information” )

compute new estimate for the mean (“innovation update”)

Ok = Ok—1+ Q' k(v — b4 Or—1)

~~

" - ”
Innovation

delivers recursive solution to LLS problem

— k
\ O = arg min (M + ) (vi— ¢4 0) 7
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Recursive Least Squares for State Estimation (1)

é\ » Assu
«

with linear measurement equation (for i = 1,..., k)

QCQ«%
(where v; is i.i.d>Zero mean noise), and initial knowledge on
initial state in form of mean Xy and inverse covariance (g

> CIearIy,lxk = Ai_1---Aoxol and thus

\u_k = CAp_1-- 'AoﬁOEl

» Using 6 = xg, €x = vk and qﬁz = CxAk_1---Ag, this can be
cast into the standard RLS framework from before
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Recursive Least Squares for State Estimation (2)
» With 6 = xg and
dp = CkAk—1--- Ao
our recursion becomes:
Qu = Qu-1+ (CkAk—1-+-Ao) ' CkAi—1-- Ao

and
Ok = Ok—1+ Q (CrAr—1 -+ A0) " (Vk — CkAx—1- - Aofk—1)

» often, we are most interested in current state x,. Let us
denote its estimate given the data (y1,...,Ym) by Xj|m)-
Clearly, "

Xikim) = Ak=1" - Aolm Xw
and
COV{X[k|m]} =Ak-1--Ao- Q;l . AOT e Az_l

N———
=Plkim)
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Recursive Least Squares for State Estimation (3)

> the innovation update of the mean then simplifies to

Rk = Kuleo] + P - Ch 0k — CiRpe—) S

—— -
» the covariance update becomes (assuming for simplicity
invertibility of Ax_1---Ao)

1 1 T
Piby = Pl + G G A

» for the propagation in time (prediction), we can use

Rikk=1] = Ak—1 " Rk—1]k—1]
=

and | 4

Plik— 1]—Ak 1 Pty - Ay
(f /6
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Summary of Recursive Least Squares

Two steps to compute estimates x|, and covariances Py )

» Prediction Step (before measurement):

Riklk=1] = Ak—1 * Kjk—1]k—1] (1)
Pikik—1] = Ak—1 * P—1jk—1) - Ak 1 (2)

» Innovation Update Step (after measurement):
Pug = (P} cc) 3
[kIk] — ( [klk—1] T Ck k) (3)
R(kik = Kklk—1 + Piiig - G vk = Cefpge—yy)— (4)

» Can interpret X x—1) and Pxx—1] as a-priori information on

X, based on prediction model ‘xk = Ak_1Xk—1 ‘
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» Could we also incorporate i.i.d. state noise wy_1 with zero
mean and covariance W _1?



Summary of Recursive Least Squares
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» Prediction Step (before measurement):
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Summary of Recursive Least Squares (and Extension)

Two steps to compute estimates x|, and covariances Py )

» Prediction Step (before measurement):

Riklk=1] = Ak—1 * Kjk—1|k-1] (1)
Plkik—1) = Ak—1 - Pp—1k—1y - Ab_1 + Wi (2)

» Innovation Update Step (after measurement):
Pug = (P} cc) 3
[kIk] — ( [klk—1] T Ck k) (3)
Rikik = Kkk—1 + Piiig - G vk = Cefpge—yy) (4)

» Can interpret X x—1) and Pux—1] as a-priori information on

Xy, based on prediction model ‘xk = Ak_1Xk—1 + Wi_1 ‘

» Could we also incorporate i.i.d. state noise wy_1 with zero
mean and covariance W _1?
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The Kalman Filter

We have basically obtained the Kalman Filter. More generally, can
assume measurement noise v, with covariance V, such that
measurements are weighted with V1.

> Full model: | xxt1 = Akxk + wk ‘ and ‘yk = Cexx + Vi
with i.i.d. zero mean noises with covariances W/, V.

» The steps of the Kalman Filter are:
» Prediction Step:
Riklk-11 = Ak—1 - Rk—1]k-1] (5)
Pikik—1] = Ak—1 - Pl—1jk—1] - Ap_1 + Wamms. (6)
» Innovation Update Step:

—1
P[k\k] = (P[k|k 1 + Ck 1Ck> (7)

Xikik] = Kik|k—1] + Plia - Ck e — G&ppe-1y)  (8)
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Optimization Problem solved by Kalman Filter

Minivize (%28 (n-2)

) & T, 1
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The Kalman Filter in Continuous Time (1)

» Continuous time model with noises w€¢, v¢:

x(t) = A°(t)x(t) + w(t)
y(t) = C(t)x(t) + vo(t)

> Note that we(t) has unit [x]/[t] and v¢(t) has unit [y]
» Assume white noises:
» Cov(w(ty), wS(t2)) = 0(ty — t2) - W€ where [W€] = [x]?/][t]
» Cov(ve(ty), v(t2)) = 6(t1 — t2) - V© where [V¢] = [y]? - [t]
» Transfer to discrete time: use small time step At and time
points ty = k - At, identify xx = x(tx)-
> ldentify wy = ftik“ we(t) dt. Random walk theory says:
W = At - W€ (the longer we wait, the more uncertain we

become)
> Identify Cx = C(tk), yk = 2 ttk*“ y(t)dt, and thus
Vg = Ait tik“ ve(t)dt. Due to averaging, covariance matrix

shrinks with longer time intervals, i.e. V = V¢/Deltat (we
give more weight to each measurement when taking fewer
measurements).
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The Kalman Filter in Continuous Time (2)

» Discrete time model:

Xp+1 = [/ + At - Ac(tk)] XK + Wi
— A
Yie = C(tk) Xk + vk
~——
=G

» Covariances:
Cov(wg) =W = At- W° and
Cov(vg) =V =At7t.ve
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The Kalman Filter in Continuous Time (3)

» Prediction step (up to first order):

Rkt = Kk + At - A(tk) K4
P[k+1|k] = P[k|k] + At [Ac(tk)P[k‘k] + P[k‘k]AC(tk)T + WC:|

> Innovation Update Step:
Plis] = (P[;llk_l] + At C,T(VC)—lcky1 (9)
(k) = Kkik—1) + At Pprgig - G (V) vk — Cefpuge—1))
» By Taylor expansion, Eq. (9) becomes

P[k|k] = 'D[k|k—1] — At - P[k|k—1] CE(VC)_lckP[kM_l]
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The Kalman Filter in Continuous Time (4)

> Adding both steps together, identifying X(tx) = Xjx41)x) and
P(tk) = Pik41jk), and taking the limit At — 0 yields the two
differential equations:

(1) = A(t)R(t) + P()Co(t) T(VE) Tt (y(t) — Co()&(1))
P(t) = A%(t)P(t)+ P(t)A°(t)"
+ We — P(t)CC(t)T(VC)*lCc(t)P(t)

» These continuous time equations are called the
“Kalman-Bucy-Filter”
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The Extended Kalman Filter in Continuous Time
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The Extended Kalman Filter in Discrete Time
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