Dynamic System Models in Discrete Time

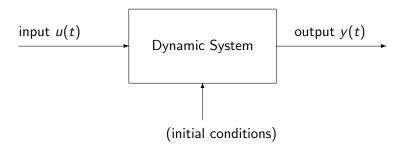
Moritz Diehl

Overview

- Deterministic Models
- Models with Measurement Noise (Output Errors)
- ► Models with Stochastic Disturbances (Equation Errors)

Deterministic Dynamic System Models

- A dynamic system model allows us to compute, for any horizon length N and sequence of inputs $u(1), \ldots, u(N)$, the sequence of **system outputs** $y(1), \ldots, y(N)$.
- ► Typically, we need to also specify the **initial conditions**.



Examples for Deterministic Models

State Space Models:

$$x(t+1) = f(x(t), u(t))$$

 $y(t) = g(x(t), u(t))$ for $t = 1, 2, ...$

Initial conditions = initial state x(1).

Input Output Models:

$$y(t) = h(u(t), ..., u(t-n), y(t-1), ..., y(t-n))$$

for
$$t = n + 1, n + 2, ...$$

Initial conditions: $y(1), ..., y(n)$ and $u(1), ..., u(n)$.

State Space Form of Input-Output Systems

- can always transform from input-output form to state space
- ► state: $x(t) = (y(t-1), u(t-1), \dots, y(t-n), u(t-n))^{\top}$
- state transition:

$$x(t+1) = f(x(t), u(t)) := egin{bmatrix} h(u(t), \dots, y(t-1), \dots) & u(t) & y(t-1) & u(t-1) & \vdots & y(t-n) & u(t-n) & \end{bmatrix}$$

- output equation: y(t) = g(x(t), u(t)) := h(u(t), ...,).
- conversely, can transform some systems from state space to input-output form (e.g. LTI systems)

Linear Time Invariant Input Output Models

General Difference Equation Form:

$$y(t) = -a_1y(t-1) - \dots - a_ny(t-n) + b_0u(t) + \dots + b_nu(t-n)$$

for $t = n + 1, n + 2, \dots$

Initial conditions: $y(1), \ldots, y(n)$ and $u(1), \ldots, u(n)$.

▶ Even more general form with non-negative integers n_a , n_b and $a_0 \neq 0$:

$$a_0y(t) + \ldots + a_{n_a}y(t-n_a) = b_0u(t) + \ldots + b_{n_b}u(t-n_b)$$

Also called "Polynomial Model" and represented by rational **transfer function**

$$G(z) = \frac{b_0 + b_1 z^{-1} + \ldots + b_{n_b} z^{-n_b}}{a_0 + a_1 z^{-1} + \ldots + a_{n_a} z^{-n_a}}$$

Discrete Time Transfer Functions

▶ Using $n = \max(n_a, n_b)$, by adding zero coefficients, one can bring each transfer function into the form

$$G(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_n z^{-n}}{a_0 + a_1 z^{-1} + \dots + a_n z^{-n}} = \frac{b_0 z^n + b_1 z^{n-1} + \dots + b_n}{a_0 z^n + a_1 z^{n-1} + \dots + a_n}$$

▶ In MATLAB, an LTI system can be defined via the command tf (transfer function), with two vectors indicating the polynomial coefficients of **numerator** and **denominator**, and the sampling time *T*:

Polynomial Model Example: FIR Models

Finite Impulse Response (FIR) models: $n_a = 0$.

$$y(t) = b_0 u(t) + \ldots + b_{n_b} u(t-n_b)$$

Output is weighted sum of past inputs.

Transfer function

$$G(z) = b_0 + b_1 z^{-1} + \dots + b_{n_b} z^{-n_b}$$

$$= \frac{b_0 z^{n_b} + b_1 z^{n_b - 1} + \dots + b_{n_b}}{z^{n_b} + 0 + \dots + 0}$$

► Concrete example: y(t) = 2u(t) + 3u(t-1) + 4u(t-2).

$$G(z) = \frac{2z^2 + 3z + 4}{z^2 + 0 + 0}$$
 MATLAB: sys=tf([2 3 4], [1 0 0],1)

Auto Regressive Models with Exogenous Inputs (ARX)

For general polynomial models

$$G(z) = \frac{b_0 z^n + b_1 z^{n-1} + \ldots + b_n}{a_0 z^n + a_1 z^{n-1} + \ldots + a_n}$$

with $n_a \neq 0$, different names are used in different fields:

- auto regressive models with exogenous inputs (ARX)
- ▶ Infinite Impulse Response (IIR) models
- ▶ There exist also auto regressive (AR) models without inputs, i.e. $n_b = 0$:

$$y(t) = -a_1y(t-1) - \ldots - a_{n_a}y(t-n_a)$$

Example: Fibonacci numbers 1,1,2,3,5,8,13,21, ... (however, such AR models have no transfer function)

Deterministic Simulation

- each deterministic model allows us to obtain $y(1), \ldots, y(N)$ by **forward simulation**.
- \blacktriangleright can define for $k=1,\ldots,N$ the forward simulation map

$$y(k) = M(k; U, x_{init}, p)$$

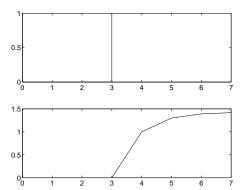
with initial conditions x_{init} , control trajectory U, and system parameters p.

- for LTI systems, simulation is particularly easy using the MATLAB command 1sim.
- ▶ 1sim expects an LTI system sys, and two vectors of length N: the input vector u and time vector t:

▶ lsim assumes by default zero initial conditions.

Example Code for using 1sim

```
sys=tf([1],[1 -0.3],1);
u=[ 0 0 0 1 1 1 1 1]; t=[0 1 2 3 4 5 6 7];
y=lsim(sys,u,t);
subplot(2,1,1); stairs(t,u);
subplot(2,1,2); plot(t,y)
```

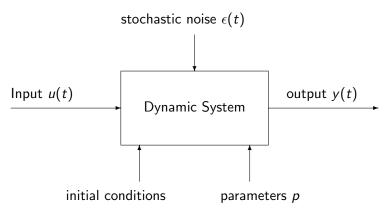


Overview

- Deterministic Models
- Models with Measurement Noise (Output Errors)
- Models with Stochastic Disturbances (Equation Errors)

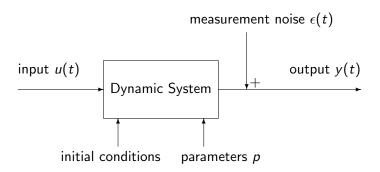
General Stochastic Models

- In reality, we always have stochastic noise $\epsilon(t)$, e.g. external disturbances or measurement errors.
- \triangleright also, we have unknown, but constant system parameters p.
- ▶ measured outputs y(t) depend on both, $\epsilon(t)$ and p:



Special Case: Models with Output Errors

- ightharpoonup simplest assumption: $\epsilon(t)$ is additive measurement noise
- use deterministic model: $y(k) = M(k; U, x_{init}, p) + \epsilon(k)$



Output Error Minimization

Assuming i.i.d. Gaussian noise, a maximum likelihood estimate for $\theta = (x_{\text{init}}^{\top}, p^{\top})^{\top}$ can be obtained by nonlinear least squares:

$$heta_{\mathrm{ML}} = \arg\min_{ heta} \sum_{k=1}^{N} (y(k) - M(k; U, x_{\mathrm{init}}, p))^2$$

Here, $U = (u(1), \dots, u(N))^{\top}$, and x_{init} represents initial conditions.

Advantage: often realistic noise assumption.

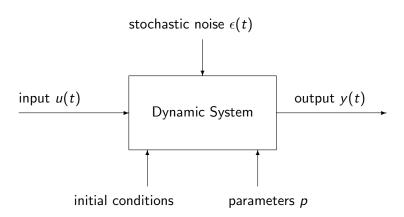
Disadvantage: M typically nonlinear, i.e. nonconvex optimization (impossible to find global minimum).

Overview

- Deterministic Models
- Models with Measurement Noise (Output Errors)
- Models with Stochastic Disturbances (Equation Errors)

General Stochastic Models

- ightharpoonup stochastic noise $\epsilon(t)$ can enter model internally, not only at output equation
- ▶ measured outputs y(t) depend on both, $\epsilon(t)$ and p:



Stochastic Models

- \triangleright i.i.d. noise terms $\epsilon(t)$ enter the model as stochastic input.
- Stochastic State Space Models:

$$x(t+1) = f(x(t), u(t), \epsilon(t))$$

 $y(t) = g(x(t), u(t), \epsilon(t))$ for $t = 0, 1, 2, ...$

Stochastic Input Output Models:

$$y(t) = h(u(t), \dots, u(t-n), y(t-1), \dots, y(t-n), \epsilon(t), \dots, \epsilon(t-n))$$

for $t = n + 1, n + 2, \dots$

Equation Error Models

▶ special case where i.i.d. noise $\epsilon(t)$ enters input-output equation as additive disturbance:

$$y(t) = h(p, u(t), \dots, u(t-n), y(t-1), \dots, y(t-n)) + \epsilon(t))$$

for $t = n + 1, n + 2, \dots$

For i.i.d. Gaussian noise, maximum likelihood estimate for $\theta=p$ is given by

$$heta_{\mathrm{ML}} = \arg\min_{ heta} \sum_{k=n+1}^{N} (y(k) - h(p, u(t), \dots, y(t-1), \dots))^2$$

- Note that u(t) and y(t) are the known measurements.
- ► The difference y(k) h(p, u(t), ..., y(t-1), ...)) is called **equation error** or **prediction error**

Prediction Error Minimization

Prediction error minimization (PEM) problem given by

$$\min_{\theta} \sum_{k=n+1}^{N} (y(k) - h(p, u(t), \dots, y(t-1), \dots))^{2}$$

- this problem is convex if p enters linearly in f (linear-in-the-parameters (LIP))
- thus, prediction error minimization is globally solvable for LIP models!

Examples for Linear-in-the-Parameters (LIP) Models

General form of LIP model with equation error noise:

$$y(t) = \sum_{i=1}^{d} \theta_i \ \phi_i(u(t), \ldots, y(t-1), \ldots) + \epsilon(t)$$

with basis functions ϕ_1, \ldots, ϕ_d .

- ▶ Summarize as $y(t) = \varphi(t)^{\top}\theta + \epsilon(t)$ with regression vector $\varphi(t) = (\phi_1(\cdot), \dots, \phi_d(\cdot))^{\top}$.
- ▶ Prediction error minimization (PEM) problem then given by

$$\min_{\theta} \underbrace{\sum_{k=n+1}^{N} (y(k) - \varphi(k)^{\top} \theta)^{2}}_{=\|y_{N} - \Phi_{N} \theta\|_{2}^{2}}$$

▶ Solved by $\theta^* = \Phi_N^+ y_N$

Special Case: LIP-LTI Models with Equation Errors (ARX)

general ARX model with equation errors given by

$$a_0y(t) + \ldots + a_{n_a}y(t-n_a) = b_0u(t) + \ldots + b_{n_b}u(t-n_b) + \epsilon(t)$$

- this is both LTI and LIP, combines best of two worlds...
- ▶ need to fix $a_0 = 1$ (otherwise, estimation problem is underdetermined)
- use $\theta = (a_1, \dots, a_{n_a}, b_0, \dots, b_{n_b})^{\top}$ and

$$\varphi(t) = (-y(t-1), \ldots, -y(t-n_a), u(t), \ldots, u(t-n_b))^{\top}$$

such that

$$y(t) = \varphi(t)^{\top} \theta + \epsilon(t)$$

ightharpoonup get unique θ easily using linear least squares!

Other Stochastic System Classes

▶ auto-regressive moving average with eXonegous input (ARMAX): noise term $\epsilon(t)$ goes through FIR filter before becoming equation error:

$$a_0 y(t) + \ldots + a_{n_a} y(t - n_a)$$

= $b_0 u(t) + \ldots + b_{n_b} u(t - n_b) + \epsilon(t) + c_1 \epsilon(t - 1) + \ldots c_{n_c} \epsilon(t - n_c)$

auto-regressive moving average models without inputs (ARMA):

$$a_0y(t)+\ldots+a_{n_a}y(t-n_a)=\epsilon(t)+c_1\epsilon(t-1)+\ldots c_{n_c}\epsilon(t-n_c)$$

when estimating the noise coefficients c_i , we always enter nonlinear least squares, because c_i are multiplied with unknown noise terms $\epsilon(t-i)$.