Uni-Logo
Sie sind hier: Startseite Laboratories Zengerle, Roland Research Electrochemical Energy Systems

Electrochemical Energy Systems | Junior Research Group

Dr. Matthias Breitwieser, Dr. Severin Vierrath

 

Open positions | Competence | Examples of Applications | Projects and Sponsors | Team | Important Publications |

 

EES, Gruppenfoto 2019, angepasst

 

Open positions

 
Topic Date Contact person More information
PostDoc, PhD: Understanding Transport Processes in Hydrogen Fuel Cells 05/2019 Dr. Severin Vierrath Job ad (PDF)

 

 

Competence

 

The junior research group "Electrochemical Energy Systems" works in the fields of fuel cells, batteries and electrolysers. Our focus is on innovative manufacturing methods and materials, as well as micro-characterization and 3D imaging techniques for these technologies.


Production and characterizationEES LOGO 2018-06

Especially for fuel cells we explore new manufacturing methods and alternative materials. With new membrane systems, we are developing fuel cells with higher power density and longer life time. At the same time, new electrode structures are being developed that enable higher power densities. For this purpose, methods such as electrospinning, spray coating or inkjet printing are available in the group. We transfer these approaches to other energy converters such as redox flow batteries and electrolysers. We characterize new materials and manufacturing methods electrochemically in fuel cell and battery test stands as well as ex situ in our microanalysis laboratory.

 

Micro-Characterization Virtual DesignEES, 2019 Gas-Water

As a basis for the understanding and improvement of electrochemical energy converters, we use 3D imaging techniques. With technologies as FIB-SEM tomography and X-ray tomography to generate three-dimensional reconstructions of electrodes and gas transport layers. Based on these reconstructions we calculate performance determining parameters. With Virtual Design, we simulate the impact on these parameters resulting from changes in morphology. We transfer these findings to new production methods. In addition, other micro-characterization methods such as Raman microscopy or micro-X-ray fluorescence spectroscopy are used to investigate membrane-electrode-assemblies.

 

Examples of Applications

 

Production of innovative membrane electrode assemblies for fuel cells

Typically, membranes for fuel cells are produced as freestanding films. In our research group, we have developed a new approach for direct coating of the entire membrane-electrode assembly. In addition, electrospinning enables us to reinforce new composite membranes with nanoparticles and nanofibers, resulting in increased chemical and mechanical stability. In the meantime, we have also transferred the technology to anion-exchange membrane fuel cells and fluorine-free hydrocarbon membranes.

 

New membranes for the redox flow battery

Despite high costs and moderate performance, perfluorinated sulfonic acids are still the standard material for use in vanadium redox-flow batteries. In our group we investigate novel membranes based on cheaper and more suitable materials.

 

Reconstruction of electrodes for the simulation of mass transport

For the first time, we have been able to produce reliable 3D reconstructions of the nanostructure of fuel cell, battery or electrolysis electrodes by means of an infiltration method developed by us for microporous materials via atomic layer deposition. With our extensive software equipment it is possible for us to make quantitative statements about the mass transport in these electrodes. The methodology is now applied for the 3D reconstruction of fuel cells, electrolysers and Li-ion batteries.

 

 

Most important publications

 

Manufacturing of hydrogen fuel cells

 

Novel membranes for Vanadium Redox-Flow Batteries


Imaging of fuel cells, electrolysers and batteries

 

 

Projects and Sponsors

 

Current research projects

  • Inspire, EU Horizon 2020
  • Neurofast, BMBF
  • Dekade, BMBF

 

Past projects

DirectMEA, Ministry of Economics Baden-Wurttemberg

 

 

Team

 

Head

 

Scientific staff

 

PostDoc

  • Dr. Chuyen Pham

 

PhD Candidate

 

Master student, Bachelor student, Student assistant

  • Luca Bohn (Bachelor student)
  • Philipp Veh(Master student)
  • Hien Nguyen (Master student)
  • Melanie Soballa (Student assistant)
  • Miriam von Holst (Student assistant)
  • Edgar Cruz-Ortiz (Student assistant)

 

 

Past member

  • Arne Götze
  • Zsoltan Danilo
  • Dr. Lukas Zielke
  • Armin Hartmann
  • Kevin Holdcroft
  • Michaela Frase
  • Dr. Lili Liu
  • Dr. Matthias Klingele
  • Peter Holzapfel


 

Important Publications

 

Electrocatalysis for fuel cells

  • C. V. Pham, M. Klingele, B. Britton, K. R. Vuyyuru, T. Unmuessig, S. Holdcroft, A. Fischer, S. Tiele, Tridoped Reduced Graphene Oxide as a Metal‐Free Catalyst for Oxygen Reduction Reaction Demonstrated in Acidic and Alkaline Polymer Electrolyte Fuel Cells, 2017, Advanced Sustainable Systems


Manufacturing of fuel cells

  • M. Breitwieser, C. Klose, A. Hartmann, A. Büchler, M. Klingele, S. Vierrath, R. Zengerle, S. Thiele, Cerium Oxide Decorated Polymer Nanofibers as Effective Membrane Reinforcement for Durable, High‐Performance Fuel Cells, 2017, Advanced Energy Materials
  • M. Klingele, M. Breitwieser, R. Zengerle, S. Thiele, Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells, 2015, Journal of Materials Chemistry A

 

Imaging and virtual design of fuel cells, electrolysers and batteries

  • P. Lettenmeier, S. Kolb, N. Sata, A. Fallisch, L. Zielke, S. Thiele, A. S. Gago, K. A. Friedrich, Comprehensive investigation of novel pore-graded gas diffusion layers for high-performance and cost-effective proton exchange membrane electrolyzers, 2017, Energy and Environmental Science
  • S. Vierrath, F. Güder, A. Menzel, M. Hagner, R. Zengerle, M. Zacharias, S. Thiele, Enhancing the quality of the tomography of nanoporous materials for better understanding of polymer electrolyte fuel cell materials, 2015, Journal of Power Sources
  • L. Zielke, T. Hutzenlaub, D. R. Wheeler, C. W. Chao, I. Manke, A. Hilger, N. Paust, R. Zengerle, S. Thiele, Three‐Phase Multiscale Modeling of a LiCoO2 Cathode: Combining the Advantages of FIB–SEM Imaging and X‐Ray Tomography, 2015, Advanced Energy Materials
  • L. Zielke, T. Hutzenlaub, D. R. Wheeler, I. Manke, T. Arlt, N. Paust, R. Zengerle, S. Thiele, A Combination of X‐Ray Tomography and Carbon Binder Modeling: Reconstructing the Three Phases of LiCoO2 Li‐Ion Battery Cathodes, 2014, Advanced Energy Materials

 

 

 

Futher publications

  1. A fully spray-coated fuel cell membrane electrode assembly using Aquivion ionomer with a graphene oxide/cerium oxide interlayer. M. Breitwieser, T. Bayer, A. Büchler, R. Zengerle, S. M. Lyth, S. Thiele, Journal of Power Sources, 2017, 351, 145–150.
  2. Tailoring the membrane-electrode interface in PEM fuel cells: A review and perspective on novel engineering approaches. M. Breitwieser, M. Klingele, S. Vierrath, R. Zengerle, S. Thiele, Advanced Energy Materials, accepted 2017,
  3. Cerium Oxide Decorated Polymer Nanofibers as Effective Membrane Reinforcement for Durable, High-Performance Fuel Cells. M. Breitwieser, C. Klose, A. Hartmann, A. Büchler, M. Klingele, S. Vierrath, R. Zengerle, S. Thiele, Advanced Energy Materials, 2017, 7, 1602100.
  4. Simple fabrication of 12 μm thin nanocomposite fuel cell membranes by direct electrospinning and printing. M. Breitwieser, C. Klose, M. Klingele, A. Hartmann, J. Erben, H. Cho, J. Kerres, R. Zengerle, S. Thiele, Journal of Power Sources, 2017, 337, 137–144.
  5. Multiscale Tomography-Based Analysis of Fuel Cells: Towards a Fully Resolved Fuel Cell Reconstruction. M. Klingele, S. Vierrath, R. Moroni, S. Thiele, Journal of Electrochemical Energy Conversion and Storage, accepted 2017,
  6. Electrospun sulfonated poly(ether ketone) nanofibers as proton conductive reinforcement for durable Nafion composite membranes. C. Klose, M. Breitwieser, S. Vierrath, M. Klingele, H. Cho, A. Büchler, J. Kerres, S. Thiele, Journal of Power Sources, 2017, 361, 237–242.
  7. High surface hierarchical carbon nanowalls synthesized by plasma deposition using an aromatic precursor. K. Lehmann, O. Yurchenko, A. Heilemann, S. Vierrath, L. Zielke, S. Thiele, A. Fischer, G. Urban, Carbon, 2017, 118, 578–587.
  8. A completely spray-coated membrane electrode assembly. M. Klingele, B. Britton, M. Breitwieser, S. Vierrath, R. Zengerle, S. Holdcroft, S. Thiele, Electrochemistry Communications, 2016, 70, 65–68.
  9. Water management in novel direct membrane deposition fuel cells under low humidification. M. Breitwieser, R. Moroni, J. Schock, M. Schulz, B. Schillinger, F. Pfeiffer, R. Zengerle, S. Thiele, International Journal of Hydrogen Energy, 2016, 41, 11412–11417.
  10. 3D Analysis of the Porosity in MgB2 Wires Using FIB Nanotomography. M. Hagner, J. Fritz, P. Alknes, C. Scheuerlein, L. Zielke, S. Vierrath, S. Thiele, B. Bordini, A. Ballarino, IEEE Transactions on Applied Superconductivity, 2016, 1.
  11. Morphological Evolution of Electrochemically Plated/Stripped Lithium Microstructures Investigated by Synchrotron X-ray Phase Contrast Tomography. F. Sun, L. Zielke, H. Markotter, A. Hilger, D. Zhou, R. Moroni, R. Zengerle, S. Thiele, J. Banhart, I. Manke, ACS nano, 2016, 10, 7990 – 7997
  12. The reasons for the high power density of fuel cells fabricated with directly deposited membranes. S. Vierrath, M. Breitwieser, M. Klingele, B. Britton, S. Holdcroft, R. Zengerle, S. Thiele, Journal of Power Sources, 2016, 326, 170–175.
  13. Directly deposited Nafion/TiO 2 composite membranes for high power medium temperature fuel cells. N. Wehkamp, M. Breitwieser, A. Büchler, M. Klingele, R. Zengerle, S. Thiele, RSC Adv, 2016, 6, 24261–24266.
  14. Influence of carbon substrate on the electrochemical performance of carbon/manganese oxide hybrids in aqueous and organic electrolytes. M. Zeiger, S. Fleischmann, B. Krüner, A. Tolosa, S. Bechtel, M. Baltes, A. Schreiber, R. Moroni, S. Vierrath, S. Thiele, V. Presser, RSC Adv, 2016, 6, 107163–107179.
  15. Three-dimensional morphology of the interface between micro porous layer and catalyst layer in a polymer electrolyte membrane fuel cell. L. Zielke, S. Vierrath, R. Moroni, A. Mondon, R. Zengerle, S. Thiele, RSC Adv, 2016, 6, 80700–80705.
  16. Improved Pt-utilization efficiency of low Pt-loading PEM fuel cell electrodes using direct membrane deposition. M. Breitwieser, M. Klingele, B. Britton, S. Holdcroft, R. Zengerle, S. Thiele, Electrochemistry Communications, 2015, 60, 168–171.
  17. Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells. M. Klingele, M. Breitwieser, R. Zengerle, S. Thiele, Journal of Materials Chemistry A, 2015, 3, 11239–11245.
  18. Enhancing the quality of the tomography of nanoporous materials for better understanding of polymer electrolyte fuel cell materials. S. Vierrath, F. Güder, A. Menzel, M. Hagner, R. Zengerle, M. Zacharias, S. Thiele, Journal of Power Sources, 2015, 285, 413–417.

 

Benutzerspezifische Werkzeuge