Solution, exercise 9
nmpc_gn.py
—
Python Source,
4Kb
File contents
from casadi import *
from casadi.tools import *
from plotter import *
from pylab import *
"""
NOTE: if you use spyder,
make sure you open a Python interpreter
instead of an IPython interpreter
otherwise you wont see any plots
"""
N = 20 # Control discretization
T = 10.0 # End time
# Which QP_solver to use
qp_solver_class = "ipopt"
#qp_solver_class = "qpoases"
# Declare variables (use scalar graph)
u = SX.sym("u") # control
x = SX.sym("x",2) # states
# System dynamics
xdot = vertcat( [(1 - x[1]**2)*x[0] - x[1] + u, x[0]] )
f = SXFunction([x,u],[xdot])
f.setOption("name","f")
f.init()
# RK4 with M steps
# also outputs contributions to Gauss-Newton objective
U = MX.sym("U")
X0 = MX.sym("X0",2)
M = 10; DT = T/(N*M)
XF = X0
QF = 0
R_terms = [] # Terms in the Gauss-Newton objective
for j in range(M):
[k1] = f([XF, U])
[k2] = f([XF + DT/2 * k1, U])
[k3] = f([XF + DT/2 * k2, U])
[k4] = f([XF + DT * k3, U])
XF += DT/6*(k1 + 2*k2 + 2*k3 + k4)
R_terms.append(XF)
R_terms.append(U)
R_terms = vertcat(R_terms) # Concatenate terms
F = MXFunction([X0,U],[XF,R_terms])
F.setOption("name","F")
F.init()
# Define NLP variables
W = struct_symMX([
(
entry("X",shape=(2,1),repeat=N+1),
entry("U",shape=(1,1),repeat=N)
)
])
# NLP constraints
g = []
# Terms in the Gauss-Newton objective
R = []
# Build up a graph of integrator calls
for k in range(N):
# Call the integrator
[x_next_k, R_terms] = F([ W["X",k], W["U",k] ])
# Append continuity constraints
g.append(x_next_k - W["X",k+1])
# Append Gauss-Newton objective terms
R.append(R_terms)
# Concatenate constraints
g = vertcat(g)
# Concatenate terms in Gauss-Newton objective
R = vertcat(R)
# Functions for calculating g and R
g_fcn = MXFunction([W],[g]); g_fcn.init()
R_fcn = MXFunction([W],[R]); R_fcn.init()
# Functions for calculating the Jacobians of g and R
jac_g_fcn = g_fcn.jacobian(); jac_g_fcn.init()
jac_R_fcn = R_fcn.jacobian(); jac_R_fcn.init()
# To allocate a QP solver in CasADi, we need to know the sparsity patterns of H and A
A_sparsity = jac_g_fcn.getOutput(0).sparsity()
jac_R_sparsity = jac_R_fcn.getOutput(0).sparsity()
H_sparsity = mul(jac_R_sparsity.T,jac_R_sparsity) # Get sparsity pattern of multiplication
qp = qpStruct(h=H_sparsity,a=A_sparsity)
# Allocate a QP solver
if qp_solver_class!="ipopt":
qp_solver = QpSolver(qp_solver_class,qp)
else: # Solve a QP using an NLP solver (IPOPT)
qp_solver = QpSolver("nlp",qp)
qp_solver.setOption("nlp_solver","ipopt")
qp_solver.setOption("nlp_solver_options",{"linear_solver":"mumps"})
qp_solver.init()
# Construct and populate the vectors with
# upper and lower simple bounds
w_min = W(-inf)
w_max = W( inf)
# Control bounds
w_min["U",:] = -1
w_max["U",:] = 1
w_k = W(0)
ts = linspace(0,T,N+1)
plotter = Plotter(ts)
t = 0
x_current = array([1,0])
while True:
w_min["X",0] = x_current
w_max["X",0] = x_current
# Form quadratic approximation of objective
jac_R_fcn.setInput(w_k)
jac_R_fcn.evaluate()
JR_k = jac_R_fcn.getOutput(0)
R_k = jac_R_fcn.getOutput(1)
# Form quadratic approximation of constraints
jac_g_fcn.setInput(w_k)
jac_g_fcn.evaluate()
Jg_k = jac_g_fcn.getOutput(0)
g_k = jac_g_fcn.getOutput(1)
# Gauss-Newton Hessian
H_k = mul(JR_k.T, JR_k)
# Gradient of the objective function
grad_obj_k = mul(JR_k.T, R_k)
# Bounds on delta_w
dw_min = w_min - w_k.cat
dw_max = w_max - w_k.cat
# Pass problem data to QP solver
qp_solver.setInput(H_k,"h")
qp_solver.setInput(grad_obj_k,"g")
qp_solver.setInput(Jg_k,"a")
qp_solver.setInput(dw_min,"lbx")
qp_solver.setInput(dw_max,"ubx")
qp_solver.setInput(-g_k,"lba")
qp_solver.setInput(-g_k,"uba")
# Solve the QP
qp_solver.evaluate()
# Get QP solution
dw = qp_solver.getOutput("x")
# Extract from the solution the first control
sol = W(w_k + dw)
u_nmpc = sol["U",0]
# Plot the solution
plotter.show(t,x_current,sol)
import sys
sys.stdout.write('Waiting for your input (<enter>, "quit|clip|clear", or numbers ):')
wait = raw_input()
if "quit" in wait:
break
if "clear" in wait:
plotter.clear()
if "clip" in wait:
plotter.toggleClipping()
try: # Easier to Ask Forgiveness than Permission
x_current[:] = array(map(float,wait.split(" ")))
except:
pass
# Simulate the system with this control
F.setInput( x_current,0)
F.setInput( u_nmpc ,1)
F.evaluate()
# Update the current state
x_current = F.getOutput(0)
t += T/N
# Shift the time to have a better initial guess
# For the next time horizon
w_k["X",:-1] = sol["X",1:]
w_k["U",:-1] = sol["U",1:]
w_k["X",-1] = sol["X",-1]
w_k["U",-1] = sol["U",-1]
