Template, exercise 8 (timeopt)
template_timeopt.py
—
Python Source,
4Kb
Dateiinhalt
from quadcopter import *
from casadi.tools import *
from pylab import *
show_3d = False
""""
This file solves a time-optimal problem
min T + alpha*int || u(t) ||_2^2 + || w(t) ||_2^2 + || q(t) -q^ref ||_2^2 dt
x(t), u(t)
subject to || p(t)-pA ||^2 >= 0.8 obstacle avoidance
|| p(t)-pB ||^2 >= 0.8 obstacle avoidance
0 <= u <= 0.5
p_0 = [0,0,0]^T
v_0 = [0,0,0]^T
p_N = [0,2*pi,0]^T
v_N_y = 0
v_N_z = 0
alpha = 0.025
"""
# Initialize with the solution of the tracking problem
pA = np.array([0, pi/2, 0])
pB = np.array([0, 3*pi/2, 0])
ps = [pA, pB]
rs = [0.8, 0.8]
# Import the tracking solution (for initialisation)
import pickle
sol_tracking = pickle.load(file('tracking.pkl','r'))
# Construct the quadcopter model
model = Quadcopter()
f = model.f
N = 200
# This constructs an object that behaves like an MX,
# but has convenient accessors
W = struct_symMX([
(
entry("X",struct=model.x,repeat=N+1),
entry("Y",struct=model.x,repeat=N),
entry("U",struct=model.u,repeat=N)
),
entry("T")
])
T = W["T"]
DT = T/N
ts = [0]
t = 0
# Build up the list of constraints
g = []
for i in range(N):
[xdot] = f([ W["Y",i], W["U",i] ])
g.append(...)
g.append(...)
t = t + DT
ts.append(t)
def norm22(x):
return mul(x.T,x)
# This time, we have both equalities and inequalities.
# To avoid messy indexing of lbg and ubg,
# we use a structure for conveniece
g = struct_MX([
entry("collocation",expr=g),
entry("obstacleA",expr=[ norm22(p[:2]-pA[:2]) for p in W["X",:,"p"] ]),
entry("obstacleB",expr=[ norm22(p[:2]-pB[:2]) for p in W["X",:,"p"] ])
])
# Construct the objective
# Reference quaternion orientation: upright position
qref = array([0,0,0,1])
# To avoid the quadcopter getting lost in spinning or upside down trajectories,
# we add some extra regularisation
R2 = vertcat(W["U",:]+W["X",:,"w"]+[ q-qref for q in W["X",:,"q"] ])
alpha = 0.025
# Time optimality
f = T + (T/N) * alpha*mul(R2.T, R2)
# Create the NLP
nlp = MXFunction( nlpIn(x=W), nlpOut(f=f, g=g) )
nlp.init()
# Create an IPOPT NLP solver
solver = NlpSolver("ipopt",nlp)
solver.setOption("linear_solver","mumps") # todo: remove
# If we need more than 100 iterations, something is wrong
solver.setOption("max_iter",200)
solver.init()
lbg = g(0)
ubg = g(0)
# Set the bounds on the obstacle constraints
lbg["obstacleA"] = rs[0]**2
lbg["obstacleB"] = rs[1]**2
ubg["obstacleA"] = inf
ubg["obstacleB"] = inf
solver.setInput(lbg, "lbg")
solver.setInput(ubg, "ubg")
# Construct and populate the vectors with
# upper and lower bounds simple bounds
lbx = W(-inf)
ubx = W(inf)
...
x0 = W(0)
# Initialize with the solution of tracking
...
solver.setInput(x0, "x0")
solver.setInput(lbx, "lbx")
solver.setInput(ubx, "ubx")
# Solve the NLP
solver.evaluate()
# Cast the result vector in a form
# that we can easily access
sol = W(solver.getOutput("x"))
X = sol["X",:,"p","x"]
Y = sol["X",:,"p","y"]
Z = sol["X",:,"p","z"]
# 2D plots
ts = linspace(0,sol["T"],N+1)
figure()
plot(ts,X,label="p_x")
plot(ts,Y,label="p_y")
plot(ts,Z,label="p_z")
xlabel("Time [s]")
legend(loc="upper left")
title("State trajectories")
figure()
plot(X,Y,'.',label="optimized")
for p, r in zip(ps,rs):
gca().add_patch(Circle(p[:2],r,color='red'))
gca().add_patch(Circle(p[:2],r,color='red'))
legend()
title("Top down trajectory view")
xlabel("x [m]")
xlabel("y [m]")
axis('equal')
figure()
step(ts,horzcat(sol["U",:]+[ sol["U",-1] ]).T,where='post')
xlabel("Time [s]")
title("Control trajectories")
ylim([-0.1,0.6])
if show_3d:
# 3D plots
from mpl_toolkits.mplot3d import Axes3D
figure()
ax = gca(projection='3d')
ax.plot(array(X),array(Y),array(Z),"b.",label="optimized")
# Plot the rotors
circle = array([ [cos(t),sin(t),0] for t in linspace(0,2*pi) ]).T*0.05
for p, q in zip(sol["X",::30,"p"],sol["X",::30,"q"]):
for offset in [ array([[1,0,0]]),array([[0,1,0]]),array([[-1,0,0]]),array([[0,-1,0]]) ]:
circle_offset = circle + 0.1*offset.T
circle_3D = mul(quat(*q), circle_offset)
ax.plot(
array(p[0]+circle_3D[0,:]).squeeze(),
array(p[1]+circle_3D[1,:]).squeeze(),
array(p[2]+circle_3D[2,:]).squeeze(),
'k'
)
# plot the obstacles
for p, r in zip(ps,rs):
x=linspace(-1,1,40)
z=linspace(-3,3,40)
Xc, Zc= meshgrid(x,z)
Yc=sqrt(1-Xc**2)*r
ax.plot_wireframe(p[0]+Xc*r,p[1]+Yc,Zc,color='red')
ax.plot_wireframe(p[0]+Xc*r,p[1]-Yc,Zc,color='red')
ax.set_xlim([-pi,pi])
ax.set_ylim([0,2*pi])
ax.set_zlim([-pi,pi])
show()
