Template, exercise 9 (NMPC with IPOPT)
nmpc_ipopt.py
—
Python Source,
3Kb
Dateiinhalt
from casadi import *
from casadi.tools import *
from plotter import *
from pylab import *
"""
NOTE: if you use spyder,
make sure you open a Python interpreter
instead of an IPython interpreter
otherwise you wont see any plots
"""
N = 20 # Control discretization
T = 10.0 # End time
# Declare variables (use scalar graph)
u = SX.sym("u") # control
x = SX.sym("x",2) # states
# System dynamics
xdot = vertcat( [(1 - x[1]**2)*x[0] - x[1] + u, x[0]] )
f = SXFunction([x,u],[xdot])
f.setOption("name","f")
f.init()
# RK4 with M steps
# also outputs contributions to Gauss-Newton objective
U = MX.sym("U")
X0 = MX.sym("X0",2)
M = 10; DT = T/(N*M)
XF = X0
QF = 0
R_terms = [] # Terms in the Gauss-Newton objective
for j in range(M):
[k1] = f([XF, U])
[k2] = f([XF + DT/2 * k1, U])
[k3] = f([XF + DT/2 * k2, U])
[k4] = f([XF + DT * k3, U])
XF += DT/6*(k1 + 2*k2 + 2*k3 + k4)
R_terms.append(XF)
R_terms.append(U)
R_terms = vertcat(R_terms) # Concatenate terms
F = MXFunction([X0,U],[XF,R_terms])
F.setOption("name","F")
F.init()
# Define NLP variables
W = struct_symMX([
(
entry("X",shape=(2,1),repeat=N+1),
entry("U",shape=(1,1),repeat=N)
)
])
# NLP constraints
g = []
# Terms in the Gauss-Newton objective
R = []
# Build up a graph of integrator calls
for k in range(N):
# Call the integrator
[x_next_k, R_terms] = F([ W["X",k], W["U",k] ])
# Append continuity constraints
g.append(x_next_k - W["X",k+1])
# Append Gauss-Newton objective terms
R.append(R_terms)
# Concatenate constraints
g = vertcat(g)
# Concatenate terms in Gauss-Newton objective
R = vertcat(R)
# Objective function
obj = mul(R.T,R)/2
# Create an NLP solver object
nlp = MXFunction(nlpIn(x=W),nlpOut(f=obj,g=g))
nlp_solver = NlpSolver("ipopt", nlp)
nlp_solver.setOption("linear_solver", "mumps")
nlp_solver.init()
# All constraints are equality constraints in this case
nlp_solver.setInput(0, "lbg")
nlp_solver.setInput(0, "ubg")
# Construct and populate the vectors with
# upper and lower simple bounds
w_min = W(-inf)
w_max = W( inf)
# Control bounds
w_min["U",:] = -1
w_max["U",:] = 1
w_k = W(0)
ts = linspace(0,T,N+1)
plotter = Plotter(ts)
t = 0
x_current = array([1,0])
while True:
w_min["X",0] = x_current
w_max["X",0] = x_current
# Pass data to NLP solver
nlp_solver.setInput(w_k,"x0")
nlp_solver.setInput(w_min,"lbx")
nlp_solver.setInput(w_max,"ubx")
# Solve the OCP
nlp_solver.evaluate()
# Extract from the solution the first control
sol = W(nlp_solver.getOutput("x"))
u_nmpc = sol["U",0]
# Plot the solution
plotter.show(t,x_current,sol)
import sys
sys.stdout.write('Waiting for your input (<enter>, "quit|clip|clear", or numbers ):')
wait = raw_input()
if "quit" in wait:
break
if "clear" in wait:
plotter.clear()
if "clip" in wait:
plotter.toggleClipping()
try: # Easier to Ask Forgiveness than Permission
x_current[:] = array(map(float,wait.split(" ")))
except:
pass
# Simulate the system with this control
F.setInput( x_current,0)
F.setInput( u_nmpc ,1)
F.evaluate()
# Update the current state
x_current = F.getOutput(0)
t += T/N
# Shift the time to have a better initial guess
# For the next time horizon
w_k["X",:-1] = sol["X",1:]
w_k["U",:-1] = sol["U",1:]
w_k["X",-1] = sol["X",-1]
w_k["U",-1] = sol["U",-1]
