VanDerPol.m
VanDerPol.m
—
Objective-C source code,
2Kb
Dateiinhalt
clc;
clear all;
close all;
EXPORT = 1;
COMPILE = 1;
T = 10;
N = 20;
Ts = T/N;
DifferentialState x1 x2;
Control u;
%% Differential Equation
f = [ dot(x1) == (1-x2^2)*x1 - x2 + u; ...
dot(x2) == x1 ];
%% SIMexport
acadoSet('problemname', 'sim');
sim = acado.SIMexport( Ts );
sim.setModel(f);
sim.set( 'INTEGRATOR_TYPE', 'INT_IRK_GL4' );
sim.set( 'NUM_INTEGRATOR_STEPS', 2 );
if EXPORT
sim.exportCode('export_SIM');
end
if COMPILE
cd export_SIM
make_acado_integrator('../integrate_vdp')
cd ..
end
%% MPCexport
acadoSet('problemname', 'mpc');
ocp = acado.OCP( 0.0, T, N );
ocp.minimizeLSQ( eye(3), [x1; x2; u] );
ocp.minimizeLSQEndTerm( eye(2), [x1; x2] );
ocp.subjectTo( -1 <= u <= 1 );
ocp.subjectTo( 'AT_END', x1 == 0 );
ocp.subjectTo( 'AT_END', x2 == 0 );
ocp.setModel(f);
mpc = acado.OCPexport( ocp );
mpc.set( 'HESSIAN_APPROXIMATION', 'GAUSS_NEWTON' );
mpc.set( 'DISCRETIZATION_TYPE', 'MULTIPLE_SHOOTING' );
mpc.set( 'SPARSE_QP_SOLUTION', 'FULL_CONDENSING_N2');
mpc.set( 'INTEGRATOR_TYPE', 'INT_RK4' );
mpc.set( 'NUM_INTEGRATOR_STEPS', N );
mpc.set( 'QP_SOLVER', 'QP_QPOASES' );
if EXPORT
mpc.exportCode( 'export_MPC' );
end
if COMPILE
cd export_MPC
make_acado_solver('../acado_MPCstep')
cd ..
end
%% PARAMETERS SIMULATION
Te = 10; Tf = 20;
X0 = [0 1];
input.x = zeros(N+1,2);
input.u = zeros(N,1);
input.y = zeros(N,3);
input.yN = zeros(2,1);
%% SIMULATION LOOP
display('------------------------------------------------------------------')
display(' Simulation Loop' )
display('------------------------------------------------------------------')
iter = 0;
time = 0;
controls_MPC = [];
state_sim = X0;
while time(end) < Tf
% Solve NMPC OCP
input.x0 = state_sim(end,:).';
output = acado_MPCstep(input);
% Save the MPC step
controls_MPC = [controls_MPC; output.u(1,:)];
% Shift the trajectories:
input.x = [output.x(2:end,:); output.x(end,:)];
input.u = [output.u(2:end,:); output.u(end,:)];
% Simulate system
sim_input.x = state_sim(end,:).';
sim_input.u = output.u(1,:).';
states = integrate_vdp(sim_input);
state_sim = [state_sim; states.value'];
% Time step
iter = iter+1;
nextTime = iter*Ts;
disp(['current time: ' num2str(nextTime) ' ' char(9) ' (RTI step: ' num2str(round(output.info.cpuTime*1e6)) ' µs)'])
time = [time nextTime];
visualize; pause
end
