Sie sind hier: Startseite Laboratories Zengerle, Roland Research Electrochemical Energy Systems

Electrochemical Energy Systems | Junior Research Group

Dr. Matthias Breitwieser, Dr. Severin Vierrath


Open positions | Competence | Examples of Applications | Projects and Sponsors | Team | Important Publications |


EES, Gruppenfoto 2019, angepasst


Open positions

Topic Date Contact person More information








The junior research group "Electrochemical Energy Systems" works in the fields of fuel cells, batteries and electrolysers. Our focus is on innovative manufacturing methods and materials, as well as micro-characterization and 3D imaging techniques for these technologies.

Production and characterizationEES LOGO 2018-06

Especially for fuel cells we explore new manufacturing methods and alternative materials. With new membrane systems, we are developing fuel cells with higher power density and longer life time. At the same time, new electrode structures are being developed that enable higher power densities. For this purpose, methods such as electrospinning, spray coating or inkjet printing are available in the group. We transfer these approaches to other energy converters such as redox flow batteries and electrolysers. We characterize new materials and manufacturing methods electrochemically in fuel cell and battery test stands as well as ex situ in our microanalysis laboratory.


Micro-Characterization Virtual DesignEES, 2019 Gas-Water

As a basis for the understanding and improvement of electrochemical energy converters, we use 3D imaging techniques. With technologies as FIB-SEM tomography and X-ray tomography to generate three-dimensional reconstructions of electrodes and gas transport layers. Based on these reconstructions we calculate performance determining parameters. With Virtual Design, we simulate the impact on these parameters resulting from changes in morphology. We transfer these findings to new production methods. In addition, other micro-characterization methods such as Raman microscopy or micro-X-ray fluorescence spectroscopy are used to investigate membrane-electrode-assemblies.


Examples of applications


Production of innovative membrane electrode assemblies for fuel cells

Typically, membranes for fuel cells are produced as freestanding films. In our research group, we have developed a new approach for direct coating of the entire membrane-electrode assembly. In addition, electrospinning enables us to reinforce new composite membranes with nanoparticles and nanofibers, resulting in increased chemical and mechanical stability. In the meantime, we have also transferred the technology to anion-exchange membrane fuel cells and fluorine-free hydrocarbon membranes.


New membranes for the redox flow battery

Despite high costs and moderate performance, perfluorinated sulfonic acids are still the standard material for use in vanadium redox-flow batteries. In our group we investigate novel membranes based on cheaper and more suitable materials.


Reconstruction of electrodes for the simulation of mass transport

For the first time, we have been able to produce reliable 3D reconstructions of the nanostructure of fuel cell, battery or electrolysis electrodes by means of an infiltration method developed by us for microporous materials via atomic layer deposition. With our extensive software equipment it is possible for us to make quantitative statements about the mass transport in these electrodes. The methodology is now applied for the 3D reconstruction of fuel cells, electrolysers and Li-ion batteries.



Projects and sponsors


Current research projects


Past projects

  • Dekade, BMBF
  • DirectMEA, Ministry of Economics Baden-Wurttemberg
  • Inspire, EU Horizon 2020
  • Neurofast, BMBF







Scientific staff




PhD Candidate


Master student, Bachelor student, Student assistant

  • Edgar Cruz-Ortiz (Master student)
  • Miriam von Holst (Master student)
  • Khaled Seteiz (Master student)
  • Luca Bohn (Bachelor student)
  • Farmal Khan (Student assistant)
  • Sophia Kilian (Student assistant)
  • Souaad Saoud (Student assistant)
  • Clara Schare (Student assistant)
  • Caroline Schneider (Student assistant)


Past member

  • Arne Götze
  • Zsoltan Danilo
  • Dr. Lukas Zielke
  • Armin Hartmann
  • Kevin Holdcroft
  • Michaela Frase
  • Dr. Lili Liu
  • Dr. Matthias Klingele
  • Peter Holzapfel
  • Dr. Witali Beichel


Most important publications


Manufacturing of hydrogen fuel cells


Novel membranes for Vanadium Redox-Flow Batteries

Imaging of fuel cells, electrolysers and batteries



Futher publications

  1. Tailoring the membrane-electrode interface in PEM fuel cells: A review and perspective on novel engineering approaches. M. Breitwieser, M. Klingele, S. Vierrath, R. Zengerle, S. Thiele, Advanced Energy Materials, 2018, 8, 1701257.
  2. Multiscale Tomography-Based Analysis of Fuel Cells: Towards a Fully Resolved Fuel Cell Reconstruction. M. Klingele, S. Vierrath, R. Moroni, S. Thiele, Journal of Electrochemical Energy Conversion and Storage, 2018, 15(1): 014701 (7 pages),
  3. A fully spray-coated fuel cell membrane electrode assembly using Aquivion ionomer with a graphene oxide/cerium oxide interlayer. M. Breitwieser, T. Bayer, A. Büchler, R. Zengerle, S. M. Lyth, S. Thiele, Journal of Power Sources, 2017, 351, 145–150.
  4. Cerium Oxide Decorated Polymer Nanofibers as Effective Membrane Reinforcement for Durable, High-Performance Fuel Cells. M. Breitwieser, C. Klose, A. Hartmann, A. Büchler, M. Klingele, S. Vierrath, R. Zengerle, S. Thiele, Advanced Energy Materials, 2017, 7, 1602100.
  5. Simple fabrication of 12 μm thin nanocomposite fuel cell membranes by direct electrospinning and printing. M. Breitwieser, C. Klose, M. Klingele, A. Hartmann, J. Erben, H. Cho, J. Kerres, R. Zengerle, S. Thiele, Journal of Power Sources, 2017, 337, 137–144.
  6. Electrospun sulfonated poly(ether ketone) nanofibers as proton conductive reinforcement for durable Nafion composite membranes. C. Klose, M. Breitwieser, S. Vierrath, M. Klingele, H. Cho, A. Büchler, J. Kerres, S. Thiele, Journal of Power Sources, 2017, 361, 237–242.
  7. High surface hierarchical carbon nanowalls synthesized by plasma deposition using an aromatic precursor. K. Lehmann, O. Yurchenko, A. Heilemann, S. Vierrath, L. Zielke, S. Thiele, A. Fischer, G. Urban, Carbon, 2017, 118, 578–587.
  8. A completely spray-coated membrane electrode assembly. M. Klingele, B. Britton, M. Breitwieser, S. Vierrath, R. Zengerle, S. Holdcroft, S. Thiele, Electrochemistry Communications, 2016, 70, 65–68.
  9. Water management in novel direct membrane deposition fuel cells under low humidification. M. Breitwieser, R. Moroni, J. Schock, M. Schulz, B. Schillinger, F. Pfeiffer, R. Zengerle, S. Thiele, International Journal of Hydrogen Energy, 2016, 41, 11412–11417.
  10. 3D Analysis of the Porosity in MgB2 Wires Using FIB Nanotomography. M. Hagner, J. Fritz, P. Alknes, C. Scheuerlein, L. Zielke, S. Vierrath, S. Thiele, B. Bordini, A. Ballarino, IEEE Transactions on Applied Superconductivity, 2016, 1.
  11. Morphological Evolution of Electrochemically Plated/Stripped Lithium Microstructures Investigated by Synchrotron X-ray Phase Contrast Tomography. F. Sun, L. Zielke, H. Markotter, A. Hilger, D. Zhou, R. Moroni, R. Zengerle, S. Thiele, J. Banhart, I. Manke, ACS nano, 2016, 10, 7990 – 7997
  12. The reasons for the high power density of fuel cells fabricated with directly deposited membranes. S. Vierrath, M. Breitwieser, M. Klingele, B. Britton, S. Holdcroft, R. Zengerle, S. Thiele, Journal of Power Sources, 2016, 326, 170–175.
  13. Directly deposited Nafion/TiO 2 composite membranes for high power medium temperature fuel cells. N. Wehkamp, M. Breitwieser, A. Büchler, M. Klingele, R. Zengerle, S. Thiele, RSC Adv, 2016, 6, 24261–24266.
  14. Influence of carbon substrate on the electrochemical performance of carbon/manganese oxide hybrids in aqueous and organic electrolytes. M. Zeiger, S. Fleischmann, B. Krüner, A. Tolosa, S. Bechtel, M. Baltes, A. Schreiber, R. Moroni, S. Vierrath, S. Thiele, V. Presser, RSC Adv, 2016, 6, 107163–107179.
  15. Three-dimensional morphology of the interface between micro porous layer and catalyst layer in a polymer electrolyte membrane fuel cell. L. Zielke, S. Vierrath, R. Moroni, A. Mondon, R. Zengerle, S. Thiele, RSC Adv, 2016, 6, 80700–80705.
  16. Improved Pt-utilization efficiency of low Pt-loading PEM fuel cell electrodes using direct membrane deposition. M. Breitwieser, M. Klingele, B. Britton, S. Holdcroft, R. Zengerle, S. Thiele, Electrochemistry Communications, 2015, 60, 168–171.
  17. Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells. M. Klingele, M. Breitwieser, R. Zengerle, S. Thiele, Journal of Materials Chemistry A, 2015, 3, 11239–11245.
  18. Enhancing the quality of the tomography of nanoporous materials for better understanding of polymer electrolyte fuel cell materials. S. Vierrath, F. Güder, A. Menzel, M. Hagner, R. Zengerle, M. Zacharias, S. Thiele, Journal of Power Sources, 2015, 285, 413–417.





  • f-cell award – Innovationspreis Brennstoffzelle in der Kategorie Forschung & Entwicklung (09/2019)
  • Innovationspreis für Masterarbeit (05/2019)
  • Nachwuchsförderpreis der Eva-Mayr-Stihl-Stiftung (11/2018)
  • Innovationspreis des Deutschen Wasserstoff- und Brennstoffzellenverbands (DWV) (04/2018)
  • Best Poster Prize beim Hereaus-Seminar, Bad Honnef (07/2017)
  • Best-Poster-Award für Brennstoffzellenkonzept (02/2017)
  • Promotionspreis für Matthias Breitwieser (11/2015)
  • Prämierter Vortrag und Top-Platzierung beim Fotowettbewerb der Baden-Württemberg Stiftung (10/2015)
  • f-cell award – Innovationspreis Brennstoffzelle (10/2015)



Benutzerspezifische Werkzeuge